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X-point deformation potentials of ITI-V semiconductors in a tight-binding approach
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The hydrostatic E, and shear E, deformation potentials of the III-V semiconductor compounds are
calculated within a nearest-neighbor tight-binding approach. In the sp3s* parametrization, analytical
expressions for both E, and E, are derived. The scaling law of the s *p interaction is modified in such a
way that it provides deformation potentials at X in reasonable agreement with available experimental
data. This phenomenological term takes into account the physical behavior of the actual excited states
under strain and consequently, it allows us to describe accurately the dependence of the band-edge states

under (001) biaxial strain.

Nowadays, high-quality strained-layer quantum wells
and superlattices (SL’s) can be grown from III-V semi-
conductors having a lattice mismatch of up to 7%.73 In
these systems, the constituent slabs are under biaxial ten-
sile or compressive strain, which in addition to the band
offset and layer thicknesses, determines their electronic
structure. Consequently, any reliable theoretical calcula-
tion of the electronic properties of the heterostructure
(HS) must rest on a realistic description of the strained
bulk semiconductors. As is well known, the effect of
strain on semiconductors is commonly described by de-
formation potentials. Therefore, the Hamiltonians used
to model the bulk crystals must provide deformation po-
tentials that agree with the experimental values. Among
the theoretical approaches, the empirical tight-binding
(ETB) model is particularly suitable to evaluate the HS’s
electronic properties, when mixing of the I'- and X-like
bulk states takes place: i.e., GaAs/GaP or InP/GaP
short-period strained-layer SL’s.*> 1In this approach,
reasonable deformation potentials at the I" point have
been previously obtained for all the III-V compounds. 68
The purpose of this paper is to calculate the hydrostatic
and shear deformation potentials at the X; minimum of
the conduction band (CB) for the III-V binary semicon-
ductor series. An ETB model with an sp>s* orbital basis
and nearest-neighbor interaction will be used. For sim-
plicity the spin-orbit interaction is neglected, since its in-
clusion does not alter the results.

In the ETB model the sp? orbital basis provides a good
description of the valence-band dispersion curves, al-
though the CB is given inaccurately. Nevertheless, with
the sp3s* parametrization, the lowest CB near X is well
reproduced.’ Hence, the deformation potentials at X are
calculated with the sp3s* orbital basis. The excited s*
state avoids the inclusion of various excited states, i.e., d
orbitals. It models the average of the p-d interactions al-
though the precise behavior of the actual excited d states
is not faithfully reproduced. The s* orbital energy and
the off-diagonal matrix element, which couples s* and p
orbital on adjacent sites, are the new ETB parameters as-
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sociated with the s* state. Biaxial strain produces atomic
rearrangements, which change the bond angles and in-
teratomic distances. In the sp3s* ETB model this results
in modifications of the angular dependence of the struc-
ture factors and of the Hamiltonian parameters. The first
effect can be taken into account exactly, while the second
is usually approximated by scaling the off-diagonal pa-
rameters on the interatomic distance. The diagonal ma-
trix elements, which are functions of the atomic orbital
energies, change in a strain field as well. However, the
common practice is to keep them fixed, since it is difficult
to establish a general law for their strain dependence.
The scaling rule of the nondiagonal parameters is of the
form H,p(d)=H 5(dy)d /d,)"*®, where d,/d is the un-
strained or strained interatomic distance and the ex-
ponents n,5, which are adjustable parameters, depend on
the pair of orbitals (a,) involved. 1°

Under the action of a biaxial strain in the (001) plane
the X; band edge of the III-V semiconductors shifts and
splits. The X, level splits with respect to the X, and X,
levels and the center of gravity of the X; levels moves.
The shift and splitting are proportional to the E; hydro-
static and E, shear deformation potentials at X. Their
magnitudes are given by E(2¢, +¢€,) and E,(€, —€,), re-
spectively, where €; (i =x,y,z) is the strain component in
the i direction. Now, if the biaxial strain only modifies
the off-diagonal terms according to the scaling law re-
ferred to above, E, and E, are given in terms of the ma-
trix elements and the band energies at X. E; can be writ-
ten as

E|=2[V3(E «—X)n,+ Vf*p(Es —X ), ]
X[3(X, =X (X, =X, (1
where the notation is that of Ref. 9, and the E , Vs Pa-
rameters are those of the unstrained crystal. The s and

s* orbitals are centered at the anions and the p orbital at
the cations. The energies of the X, X, and X{ levels are
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the eigenvalues of the matrix

E. . 0 iV
0 E, iV, |. 2
—iV., —iV, E,

In the derivation of formula (1) the s symmetry of the ex-
cited s* state is considered. The calculation of E, is per-
formed with the ETB parameters of Refs. 6 and 9 and
Harrison’s rule, %! je., nsp=2. Then, nox, is the only
parameter which allows us to adjust E,. Experimental
values of the absolute hydrostatic deformation potential
at the X minimum are scarce. Consequently, nox, is
chosen to fit the experimental variation of the indirect
band gap, I'-X, with hydrostatic pressure. ns*p=3.3
gives the best variation law valid for all the III-V com-
pounds. The calculated deformation potentials E,; are
shown in Table I. The agreement with the experimental
data and other theoretical values obtained with more
elaborate models is quite reasonable. A better agreement
can be attained with an independent fit for each material,
but our purpose is to derive a general law.

Similarly, the shear deformation potential E, can be
written as

E,=—2[VI(E«—X))+ Vj*p(Es -X)]
XX, —X)(X,—X{)]17'. (3)

We would like to point out that in expression (3) there is
no adjustable parameter. The calculated E, are given in
the first column of Table II. Their absolute values are
very different from the experimental ones and they have
the opposite sign. The incorrect sign of E, has significant
consequences on the relative energy position of the split
X; (i =x,y,z) levels. The energies of the X, (X,) and X,
levels are in the wrong order; i.e., under biaxial (001) ten-
sile strain the degenerated X, and X, valleys must be
above the X, while in the calculation they are at a lower
energy. The opposite occurs for compressive strain. It is

TABLE I. Calculated and experimental values of the E, hy-
drostatic deformation potential at the X point, given in eV,

This work Theory Expt.

AlP 1.81 1.97%
2.3°

AlAs 1.5 1.9°

AlSb 1.21 1.67% 2.2°¢
1.9°

InP 1.85 2.2°

InAs 1.59

InSb 1.56

GaP 1.93 1.5% 1.6°
2.3°

GaAs 2.0 1.6* 2.0°

GaSb 1.99

*Reference 12.
"Reference 13.
‘Reference 14.
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TABLE II. Calculated and experimental values of the E,
shear deformation potential at the X point, given in eV.

This work

E, F=0 F=—-—0.63 Theory Expt.
AlP —1.8 6.75
AlAs —1.26 6.11 5.1+0.7*
AlSb —0.94 6.0 5.4+0.3°
InP —2.3 33
InAs —1.92 3.7 4.5°
InSb —14 4.53
GaP —2.03 5.65 6.5+0.5°

6.31£0.9°

GaAs —1.92 6.0 8.6° 6.5+1¢
GaSb —1.57 6.46

*Reference 15.
YReference 14.
‘Reference 12.
dReference 16.

inferred from expression (3) that the shear deformation
potential E, does not depend on the scaling exponent.
Then, any scaling rule would yield equal results. The
only way to obtain E, in agreement with the experimen-
tal findings is to alter the strain dependence of either the
Vi or the V. *, matrix elements. We propose to modify
v, o since physical grounds justify the addition of an ex-
tra term to the usual scaling law of this parameter.

In the sp’d> parametrization the unstrained ETB
Hamiltonian at the X point is an 18X 18 matrix which
has a block structure. The X; CB minimum, which has
threefold degeneracy X, =X, =X,, is an eigenvalue of the
matrix

Edl ind 0 _i2Vpd7r/3
Wi  Eg —iVy 0
0 ivy, E, iv, ’ “)
~i2V,4/3 O —iV,  E,

where d1 and d2 stand for d orbitals with e, and #,, sym-
metry, respectively. The s and d1 orbitals are centered at
the anion and the p and d2 at the cation sites. If the d-d
and s-d interactions are neglected the resulting matrix is
equivalent to that obtained for the sp3s* basis [matrix (2)]
replacing E;; by E « and —2V,,;./3 by Vs*p. For un-
strained zinc-blende (ZB) crystals, the similarity between
both matrices [(2) and (4)] explains why the sp3s* model
describes reasonably the dispersion relation of the lowest
CB along the [001] directions. Furthermore, we would
like to emphasize that although two parameters are need-
ed to describe the p-d interaction V,;, and V,,,, due to
the ZB symmetry the energy of the X, level depends only
on one, V,;,. Then, within the sp 3s* model, the p-d in-
teraction at X; for ZB crystals can be modeled with the
v, x, parameter. On the other hand, a shear strain breaks
the ZB cubic symmetry. Under biaxial strain in the (001)
plane, the matrix elements between the d1 and p, or p,
orbitals are different from that of the p, level. Particular-
ly, the d 1-p interaction along the [001] direction has con-
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tributions from both the V4, and V,,,,

V(3z2—r2p)=—(do/d)"" "
X[2(1+€,)V,4,/3
+2(e,—€,)Vp4,/3V3] . (9

In the derivation of this formula only terms in first order
in €; are kept. Then, two parameters V,;, and V,,, are
needed to describe correctly the effect of biaxial strain in
the d1-p, interaction. Analogous expressions, involving
both V,;, and V,,,, are obtained for the d-p matrix ele-
ments along the [100] and [010] directions. However, in
the sp3s* model only one parameter, V.« , gives the s*p
interaction in the presence of a strain field. Therefore, to
take into account the physical behavior of the actual d
states under biaxial strain a new parameter, which mod-
els the V,,, interaction, is needed. We propose to modify
the strain dependence of the s*-p interaction in the fol-
lowing way:

Vs*px(d):Vs*py(d)
n 4 +1
=(do/d) " Vs (do)(1+e,)—Fle,~¢,)]
(6)

n +1
Vs,pz(d)=(d0/d) A *p(do)[(l+ez)+2F(ez—ex )],
where F is the new adjustable parameter and is given by
F= Vpd,,/2\/ 3V,4, In both expressions the first term
arises from the usual scaling law, while the second is the
added term, which allows us to describe correctly the
strain dependence of the d-p interaction. Note that it be-
comes zero when the strain is hydrostatic.

Then, the shear deformation potential E, is given by

Ey=—2[Vo(Ex—X )+ Vi (E;—X,)
TFE =XV, /(X =X DX, —X])] .
)

F =—0.63 gives the best general law for all the III-V
compounds. The calculated E, deformation potentials
are given in Table II. The agreement with the available
experimental data is reasonable. We would like to point
out that Harrison’s universal values for the TB pdm and
pdo interactions exactly yield F=—0.63.1° The physi-
cal effect of the F term is better understood by inspection
of Fig. 1, where the lowest CB of GaP under (001) biaxial
tension is presented. The bulk dispersion curves are
shown along the [100],[010] and [001] directions of the
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FIG. 1. Dispersion curve of the lowest conduction band of
GaP lattice matched to (001) GaAs substrate, along the [001]
and [100],[010] directions.

bulk Brillouin zone, and the GaP crystal is considered to
be lattice matched to (001) GaAs. For F=0 the CB
minimum appears at the X,,X, valleys. However, for
F = —0.63 the minimum occurs at the X, valley, as is ex-
pected for GaP under tensile strain. Thus, the reported
modification of the scaling law for the s*p interaction
provides an accurate description of the X CB levels for
the III-V semiconductors under biaxial and hydrostatic
strain. Note that the modification does not alter the pre-
diction of the band-edge deformation potentials at I". In
summary, within the sp3s* parametrization a general law
for the strain dependence of the ETB parameters has
been derived. It provides a precise description of the
band-edge states under strain for all the III-V semicon-
ductor series. As explained above, this is essential to ob-
tain a reliable picture of the electronic structure of
strained heterostructures, not only to attain reasonable
energies and localizations of their states, but also for ac-
curate determination of band offsets.
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