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Abstract

This paper presents a simple analytical method for calculating the strain distribution in and around self-assembled
(In,Ga)As=GaAs quantum-dot nanostructures. The dots are assumed to be buried in an in1nite medium so that the e2ects of
free surfaces can be neglected. This assumption is based on the relative size of the dot, compared to that of the overlayer.
The model—based on classical continuum elasticity—is capable of handling dots of arbitrary shapes; here, however, only
dots with pyramidal and truncated-pyramidal shapes are considered. The approximate shape of the dots is extracted from
high-resolution transmission electron microscope observations. The electronic energy levels in the dots are calculated by
solving the three-dimensional e2ective mass Schr6odinger equation. The carrier con1nement potential in this equation is
modi1ed by the strain distribution. Because the dots are in a strong con1nement regime, the e2ects of Coulomb interactions
are neglected. The calculated con1ned eigen-energies agree with our experimental photoluminescence data. The calculations
also support previous results reported by others. ? 2002 Elsevier Science B.V. All rights reserved.

PACS: 83.85.St; 73.21.La; 68.66.Hb; 68.37.Lp; 73.43.Cd
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1. Introduction

Progress in nanotechnology has resulted in the
synthesis of nanometer-scale self-assembled quantum
dots for potential applications in electronics and op-
toelectronics. Several devices that include quantum
dots in their active regions have been proposed in
the past few years; some of them, such as lasers,
infrared detectors, and memory elements have been
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demonstrated. Since millions of dots are generally
required to yield macroscopic e2ects, a narrow-size
distribution is important for optimum device perfor-
mance. The synthesis of uniform-sized dots is still
a research problem and much remains to be learned
in understanding the growth processes that lead to
pristine and uniform-sized quantum dots. The most
studied quantum-dot system today is based on the
spontaneous formation of (In,Ga)As islands on a
GaAs substrate during heteroepitaxy. This process is
a consequence of the strain which results from the
in-plane lattice-mismatch between the (In,Ga)As and
the GaAs. The speci1c shape of the dots is usually
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a function of the growth parameters and the general
environment of the dots. Some researchers have ob-
served dots with hemispherical shapes; others have
observed dot-shapes that are multifaceted domes;
and yet several other groups have reported dots with
pyramidal shapes [1]. It is generally diFcult to de-
termine the shape of the dots in situ during growth;
the lateral extent and height of the dots, however,
can often be determined approximately for surface
quantum dots from atomic force microscope stud-
ies. Better estimates of buried dot-sizes can usually
be obtained from transmission electron microscope
studies; these studies can generally provide valuable
information about the shape of the dots [2]. Central to
understanding many properties of the dot is a need to
determine the elastic strain distribution in and around
the dots. The strain distribution profoundly a2ects
the electronic structure, and hence the optical proper-
ties of the dots by modifying the energies and wave
functions for con1ned carriers. The principal aim of
this paper is to quantitatively determine the stress
1elds and hence the strain distribution in and around
a dot. This information is then used to calculate the
electronic structure of the dots.
Strain drives the Stranski–Krastanow growth pro-

cess that leads to the formation of dots; residual strain,
in general, can have interesting e2ects on the elec-
tronic and optical properties of semiconductor struc-
tures. The e2ects of strain on semiconductors have
therefore motivated a signi1cant interest in calculating
its magnitudes in a broad range of devices [3]. The hy-
drostatic (�h) component of strain, for example, usu-
ally shifts the conduction and valence band-edges of
semiconductors; biaxial (�b) strain, on the other hand,
modi1es the valence bands by splitting the degener-
acy of the light- and heavy-hole bands. These e2ects
have a profound impact on the electronic and optical
properties of the structures out of which devices might
be fabricated.
The two general classes of techniques used in

the calculation of strain include the 1nite di2erence
[4,5] and atomistic calculation methods [6]. Both of
these methods require considerable computational
resources. In the atomistic approach, there is an im-
plicit reliance on the validity of the valence force
1eld model with a Keating interatomic potential.
This method, however, has recently been shown to
be questionable for small islands whose base dimen-

sions are smaller than 10 nm [7]; for these islands,
the Stillinger–Weber potential has been suggested as
an alternative potential. The 1nite element and 1nite
di2erence methods have been used by several groups
[4,8–11]. One advantage of the 1nite element and
1nite di2erence methods is that they can be used to
treat problems with complex geometries. This advan-
tage, however, is o2set by the demand on computa-
tional resources. Another variant of these methods is
the boundary element approach; this, however, can be
mathematically complex [12]. A simple and elegant
method for calculating strain 1elds around a single,
isotropic, cubic dot has been presented by Downes
et al. [13]. This method is based on a simpli1cation of
Eshelby’s classic inclusion theory [14]. The method
1rst identi1es a set of vectors such that the divergence
of each gives the Green’s function for the stress com-
ponents �ij. By invoking Gauss’ theorem, the stress
1eld is determined by performing an integral over the
surface of the dot.
In this paper, we extend the method to more com-

plex and practical geometries. We particularly focus
on regular pyramids and those with truncated tops.
In the model, we make the basic assumption that the
elastic properties of the materials are isotropic [15].
This assumption does not seriously a2ect any qualita-
tive conclusions drawn from the calculations. In any
event, it has been shown in a recent paper [16] that as
long as the symmetry of the shape of the structure is
less than or equal to the cubic symmetry of the crys-
tal, both anisotropic and isotropic models give similar
results. We caution however that even though this is
true for quantum-dot nanostructures, it is not so for
quantum-well heterostructures.
Our calculations here are for the (In,Ga)As=GaAs

materials system. The model, however, is general
enough that it can be used for similar other materi-
als systems. For the InAs=GaAs system, the initial
strain or lattice-mismatch is de1ned as �0 = (aGaAs −
aInAs)=aInAs =−0:067. This is the fractional change of
the di2erence between the in-plane lattice constant of
the GaAs substrate and the InAs epilayer with respect
to the InAs lattice constant; when Ga is included in
the composition of the epilayer, the mismatch (strain)
becomes �0 = (aGaAs − aInxGa1−xAs)=aInxGa1−xAs.
The Poisson ratios for the binary materials are taken
to be 0.316 for the GaAs and 0.354 for the InAs. As
is usual in continuum elasticity, we assume that the
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materials are continuous, linear, isotropic, and obey
Hooke’s law. The use of continuum elasticity meth-
ods has been experimentally veri1ed to be valid for
layers as thin as three atomic monolayers [17]; fur-
thermore, it is estimated theoretically that the method
remains valid for layers whose thicknesses are on
the order of 1ve atoms [18]. We want to point out
that the sensitivity of some physical properties to
strain could make anisotropic e2ects important; the
isotropic approximation should therefore be treated
with caution, particularly for layers oriented in certain
crystallographic directions. For most cases, however,
the anisotropy only modi1es the strain distributions
slightly [16,19].
Classical elasticity and atomistic methods have

been shown to give similar results for small strains
[20]. Di2erences become apparent for strains larger
than 5%, particularly in the case of semiconduc-
tor quantum dots. Even though atomistic elasticity
is expected to continue to give reliable results for
large strains, the number of atoms involved in the
computations makes the method unwieldy for rapid,
order-of-magnitude calculations. The advantage of
the approach based on Eshelby’s inclusion theory is
that it is simple and allows one to 1nd approximate
analytical expressions for the strain tensor compo-
nents. As we will show later, for quantum dots with
lateral dimensions in the range of 10–20 nm, the
strain pro1les calculated within the modi1ed Eshelby
framework are in good agreement with those obtained
by the methods of atomistic elasticity.
This paper is organized as follows: in Section 2

we give a detailed description of the basic model for
calculating the strain tensor for pyramidal and trun-
cated pyramidal quantum dots. The strain 1elds are
presented and discussed in Section 3. The method dis-
cussed here is a suitable precursor for the calculation
of electronic structure based on the envelope function
method within the plane-wave expansion technique.
One can determine, for example, the strain-dependent
matrix element linking any pair of plane waves. We
present and discuss the strain-dependent con1ning po-
tentials for electrons and holes, as well as the elec-
tronic energy levels in Section 4. A summary of our
results is given in Section 5.
In our calculations, we consider a single isolated dot

to facilitate comparison with published results. The dot
is assumed to be buried deep within a matrix material.

Figs. 1(a) and (b) show the schematic cross-sections
of the pyramidal and truncated pyramidal quantum-dot
structures under consideration. They are assumed to
be on top of a semi-in1nite (0 0 1) GaAs substrate on
which is grown a thin InAs wetting layer 1rst.

2. Model description

Most theoretical calculations of the properties of
InAs dots assume a square-based pyramidal shape
[4,6,21]. Here, for purposes of comparison with previ-
ously published work, we also consider this geometry.
However, we extend our calculations to include the
truncated pyramidal case. When a capping layer—for
example GaAs—is grown on top of a layer of dots,
the morphology of the overlayer is a2ected by the in-
teraction of the inhomogeneous strain around the dots
and in the wetting layer. This a2ects the apex of the
dots. There is then a thermodynamically favored ten-
dency for the adatoms to migrate to the side of the
dots [22], resulting in a reduction of the dot height and
formation of a Nat (0 0 1) top surface.
Following Downes et al. [13], the LamOe potential u

during relaxation can be described by a scalar potential

u=
1
2G

∇�; (1)

where G is the shear modulus, de1ned as 2G=E=(1+
�) in Ref. [23]. The displacement potential obeys the
Poisson equation

∇2�(r) =
1 + �
1− �

�0(r)2G: (2)

From Eq. (2), a solution can be reached by integration,
using Green’s function, thus

1
2G

�(r) =− (1 + �)
(1− �)

∫ ∫ ∫
V

�0(r0)
4�|r − r0| d

3r0: (3)

In the equation above, the function 1=|r − r0| can be
written as

−1
2
∇̃ · (r − r0)

|r − r0| :

The point r0 is within the volume of the dot. The vol-
ume integral in Eq. (3) can be converted to a surface
integral by applying the divergence theorem to it, with
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Fig. 1. Schematic models for the pyramidal (a) and truncated pyramidal (b) quantum-dot structures; B= base width, H = pyramid height,
t = truncation factor, h= truncated pyramid height, d= thickness of wetting layer; (c) Three-dimensional model of a quantum dot in the
Cartesian coordinate system.

the point r0 now being on the surface of the dot, as
shown in Fig. 1(c). Thus

1
2G

�(r) =
1
8�

(1 + �)
(1− �)

×
∫ ∫ ∫

V
�0(r0)∇̃ · (r − r0)

|r − r0| d
3r0

=
1
8�

(1 + �)
(1− �)

×
∫ ∫

S
�0(r0)

(r − r0)
|r − r0| dS(r0): (4)

The initial lattice-mismatch, �0, can be considered
constant within the volume of the dot. With the ap-
propriate substitutions, Eq. (1) becomes

u=
1
2G

∇�=
�0
4�

(1 + �)
(1− �)

∫ ∫
S

1
|r − r0| dS(r0): (5)

The stress components can therefore be written as

�ij(r) =− �0E
8�(1− �)

×
∫ ∫

S

(i − i0)î + (j − j0)ĵ
|r − r0|3 dS(r0)

+ �ij
E�0
1− �

∫ ∫ ∫
V
�(r − r0) dV (r0); (6)

where î and ĵ are unit vectors in the ith and jth di-
rections, respectively, for i = x; y; z; j = x; y; z and
r2=x2+y2+z2. The parameter �0 is the isotropic mis1t
strain, E is the Young’s modulus, � is Poisson’s ratio,
and �ij is the Kronecker delta function. The last part
of Eq. (6) comes from evaluating the limit of the sur-
face integral, as a 1eld point r approaches the bound-
ary point r0 on the surface of the dot. The mis1t strain
is taken as negative for a material under compression.
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The volume of a square-based, truncated pyramid is
de1ned by

−B
(H − z)
2H

6 x6B
(H − z)
2H

;

−B
(H − z)
2H

6y6B
(H − z)
2H

;

06 z6Ht; (7)

where H is the height of the pyramid in the absence of
truncation, B is the base of the pyramid, and 06 t6 1,
where t represents the truncation factor. The z-axis
is the [0 0 1] growth direction, and the origin of the
coordinates is at the center of the square base of the
pyramid (the z = 0 plane).
After converting to Cartesian coordinates, the in-

tegrations indicated in Eq. (6) can be easily carried
out. The in-plane stress components have cumbersome
mathematical expressions; however, for some parti-
cular directions, they can be simpli1ed. For example,
for a square-based pyramidal dot, with a contrast ratio
(de1ned as the ratio of the height to the base) of 1:2,
where B = 2a and H = a, one obtains the following
expressions as functions of z:

�′
xx = �′

yy

= 2
[
−tan−1

(
z − a
|z − a|

)

+ tan−1
(

z√
2a2 + z2

)]

+
1
2

[
ln

∣∣∣∣∣
√
2a2 + z2 − a√
2a2 + z2 + a

∣∣∣∣∣
− ln

∣∣∣∣∣
√
2a2 + z2 + a√
2a2 + z2 − a

∣∣∣∣∣
]

+
2√
3

[
ln
(−(z − a)√

3
+ |z − a|

)

− ln
(−2a− z√

3
+
√

2a2 + z2
)]

; (8)

and

�′
zz = 4�− 4

[
−tan−1

(
z − a
|z − a|

)

+ tan−1
(

z√
2a2 + z2

)]

+

[
ln

∣∣∣∣∣
√
2a2 + z2 − a√
2a2 + z2 + a

∣∣∣∣∣− ln

∣∣∣∣∣
√
2a2 + z2 + a√
2a2 + z2 − a

∣∣∣∣∣
]

+
4√
3

[
ln
(−(z − a)√

3
+ |z − a|

)

− ln
(−2a− z√

3
+
√

2a2 + z2
)]

: (9)

Note that �ij=E�0=(4�(1−�))�′
ij, where �0; �, and E

are as de1ned before. The more general analytical ex-
pressions for calculating stress distributions in struc-
tures with arbitrary degrees of truncation are given in
the Appendix A. The expressions for the strain com-
ponents follow by substitution of the stress compo-
nents into Hooke’s law. The generalized stress–strain
relations are:

�kl = Cklmn�mn; (10)

and

�kl = Sklmn�mn; (11)

where the Cklmn are the compliance and the Sklmn the
sti2ness coeFcients. For materials with cubic symme-
try, only three of the 81 components are independent.
So C11 = C1111 = C2222 = C3333; C12 = C1122 = C2233,
etc., and C44 = C1212 = C2323, etc.; similar relations
hold for S11; S12 and S44. The stress–strain relations
can then be written in terms of Young’s modulus E
and Poisson ratio �. Since

E =
1
S11

=
(C11 − C12)(C11 + 2C12)

C11 + C12
; (12)

and

�=−ES12 =
C12

C11 + C12
; (13)

then

�ij =
E

1 + �
�ij +

�E
(1 + �)(1− 2�)

�ij�kk ; (14)
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and

�ij =
1
E
[(1 + �)�ij − �ij��kk ]: (15)

In this paper we de1ne the hydrostatic and the biaxial
strains as

�h = �xx + �yy + �zz; (16)

and

�b = �zz − 1
2 (�xx + �yy); (17)

respectively. These relations are introduced here be-
cause they represent important quantities used in the
analysis of the electronic energy levels in a later
section.

3. Strain distribution

We have calculated the strain distributions for a
number of structures whose dimensions are given in
Table 1. Calculations for pyramidal QDs, labeled PQD
in Table 1, as well as truncated pyramidal dots, labeled
TPQD in Table 1, have been carried out. We consider
1rst structure PQD3 in Table 1; this type of structure
has been extensively studied and reported on in the
literature. Fig. 2 shows the strain tensor components
�xx and �zz for structure PQD3, plotted as functions
of position along the z-axis. The shear strain compo-
nents, �xy; �yz, and �xz are negligible in the dot and
barrier materials; they could, however, be apprecia-
ble at the interfaces [4]. By symmetry, the component
�xx = �yy. In a thin substrate region below the dot,

the GaAs lattice experiences a tensile (positive �xx)
strain in the x–y plane and a compressive (negative
�zz) strain in the z direction. In this case, the dot is
forcing the substrate lattice constant to be that of InAs
(aInAs=6:05 SA). In the base region of the dot, the situ-
ation is reversed. Here, �zz is positive and �xx negative
because the substrate now attempts to force the dot
lattice constant to be that of GaAs (aGaAs = 5:65 SA).
With increasing height within the dot, �zz changes its
sign, becoming negative at the top of the pyramid. At
the top of the pyramid, the dominant forces acting on
the dot originate from the GaAs matrix at the sides,
causing a compressive strain (negative �zz) along the
z direction and a tensile strain (positive �xx) in the
x–y plane. Fig. 3 is a plot of the �xx and �zz components
along the x-axis for structure PQD3. Within the dot,
both �xx and �zz are negative, implying the existence
of a region of hydrostatic compression. The �xx; �yy,
and �zz components of the strain tensor are plotted in
Figs. 4(a), (b), and (c) in the x–z plane.
The hydrostatic and biaxial components of the strain

for structure PQD3 are plotted as functions of posi-
tion along the z-axis in Fig. 5. The hydrostatic strain
is compressive within the dot and in the surrounding
barrier material. The interior of the quantum dot ex-
hibits a nearly homogeneous hydrostatic strain, while
the barrier experiences a small hydrostatic strain. This
is because GaAs is sti2er than InAs. The biaxial strain
tends to be negative in the barrier and positive in the
dot, and it is zero near the center of the dot. In this
region, the strain is entirely hydrostatic in character.
Fig. 5 suggests that a signi1cant transfer of biaxial
strain to the barrier takes place.

Table 1
Dimensions of single (In,Ga)As=GaAs quantum-dot structures used for computations

Structure Base width Pyramid height Truncation Truncated pyramid
B (nm) H (nm) factor t height h (nm)

PQD1 12 3
PQD2 12 4
PQD3 12 6
PQD4 16 6
PQD5 20 6
TPQD1 13.8 4.6 0.25 1.15
TPQD2 13.8 4.6 0.50 2.30
TPQD3 13.8 4.6 0.75 3.45
TPQD4 19.7 4.7 0.64 3.00
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Fig. 2. Strain tensor components �xx and �zz for structure PQD3
plotted along the z-axis.

Fig. 3. Strain tensor components �xx and �zz for structure PQD3
plotted along the x-axis.

We have studied strain relaxation in the pyramidal
InAs=GaAs QDs for the di2erent structures labeled
PQD(1–5) in Table 1. We compare the strain distribu-
tions in the x–z plane for dots of di2erent base widths
(B1 = 12 nm for PQD3, B2 = 16 nm for PQD4, and
B3=20 nm for PQD5) but the same height (H=6 nm)
in Fig. 6. We note that for dots with small base widths,
the strain components change sign from the base re-
gion of the dot to the apex more rapidly than for
dots with large base widths. For example, in structure
PQD5, the strain components �xx and �yy are negative
inside the dot, while in structure PQD3, they change
sign from negative at the base of the dot to positive at
the apex of the dot. The strain component �zz changes
rapidly from positive to negative values along the
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z-axis in structure PQD3, but is mostly tensile inside
structure PQD5. The electronic structure of the dots
is also expected to have such a strong dependence on
the base lengths, as we will discuss in Section 4.
Fig. 7 illustrates the strain relaxation pattern for

InAs dots of the same base width (B = 12 nm) but
di2erent heights (H1 = 3 nm for PQD1, H2 = 4 nm
for PQD2, and H3 = 6 nm for PQD3). This compari-
son suggests that the strain-modi1ed electronic energy
structure is likely not to be as sensitive to variations
in the height of the dot as it is to changes in the base
width of the dot. Extraordinarily tall dots have large
hydrostatic strains near their centers. This increases
the band gap inside the islands, partially compensat-
ing for the change in con1nement potential.
Calculations indicate that when InAs self-assembled

pyramidal dots are buried under a GaAs overlayer,
signi1cant tensile stress is induced at the top of the
dot; the stress at the edges of the dot, on the other
hand, is weak and compressive. This is in contrast
to surface dots, where stress relaxation occurs at the
island tops but is concentrated at the edges [10]. It
should be noted that the stress component �zz (at the
x = 0 plane) is compressive (negative) in embed-
ded dots whereas it is tensile (positive) in uncovered
ones. The strain distribution maps calculated here for
pyramidal InAs dots are in reasonably good agree-
ment with published results obtained by calculations
based on atomistic methods [4,24]. The agreement
is surprisingly good considering the computational
simpli1cations introduced in the present work.
We have extended the analytical procedure to calcu-

lating strain distributions of truncated InAs pyramidal

dots such as that shown in the transmission electron
microscope (TEM) image of Fig. 8. The structure in
this 1gure was grown by molecular beam epitaxy on
a (0 0 1) GaAs substrate. From the substrate up, the
structure consists nominally of a 250-nm-GaAs bu2er
layer; this is followed by 1ve periods of InAs=GaAs
quantum dots. The entire structure is caped with 27 nm
of GaAs. The dot density, as determined by atomic
force microscope, was about 4×1010 cm−2. The shape
of the dots was determined from cross-sectional TEM
studies. The TEM image clearly shows that the dots
are coherent, with no observable dislocations. The dots
could be discerned from their darker appearance due
to the presence of Indium. The buried dots appear to
be pyramids with truncated tops; their base and height
were found to be B = 13:8 nm, and h = 3:4 nm, re-
spectively. This corresponds to a truncation factor of
t =0:75 (structure TPQD3 in Table 1). This observa-
tion is consistent with previous reports [25]. We have
calculated the strain tensor components, as well as the
hydrostatic and the biaxial strain pro1les for this struc-
ture. The results are shown in solid lines in Fig. 9. We
mention that the analytical results obtained for struc-
ture TPQD3 are in very good agreement with those
obtained for a similar structure, using 1nite element
method, in Ref. [26].
For pyramidal dots of arbitrary truncation, general

expressions for the stress tensor components can be
derived. These expressions are given in the Appendix
A for a uniformly lattice-mismatched InAs=GaAs dot.
Calculations based on these expressions for truncated
InAs=GaAs dots have been performed for structures
TPQD(1–3) in Table 1. The speci1c truncation fac-
tors used are t = 0:25, 0.50, and 0.75, respectively.
For t = 1 we obtain the whole pyramidal geometry,
while for t = 0, we merely reproduce results for the
two-dimensional wetting layer alone.
There are several features that are common to all

strain distributions for the structures studied. First, the
magnitudes of the strain components are largest at
the dot=matrix interface, particularly at the vertices.
The strain is rapidly attenuated within the dot and
in the matrix material immediately below the square
base of the dot. It remains of similar form for each
truncation since the base of the dot is unchanged. The
hydrostatic strain is zero in the matrix material and
proportional to �0 in the quantum dot, consistent with
standard inclusion theory. The conduction band shift
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Fig. 6. Comparison of strain components for structures PQD(3-5), characterized by height H =6 nm, but di2erent base widths: B1 =12 nm
(PQD3), B2 = 16 nm (PQD4), and B3 = 20 nm (PQD5): (a) �xx , (b) �yy , (c) �zz (strain expressed in %).
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Fig. 6. (Continued.)

depends on the hydrostatic strain, so the conduction
band shift is relatively constant within a dot of constant
composition. Figs. 9(a) and (b) illustrate the �xx and
�zz strain tensor components plotted along the z-axis
for structures TPQD(1–3) of Table 1.
Our results, and those of others, indicate that the

magnitudes of the strain components depend on the
geometries of the dots. This is as it should be for
both qualitative and quantitative reasons. Consider,
for example, that the biaxial strain is very sensitive to
truncation (see Fig. 9(c)); at the apex of the pyramid,
the biaxial strain is negative, but becomes increasingly
positive as the degree of truncation increases.
For structure TPQD4 we consider the case where

the dot material is a ternary compound; in particular,
we consider the case where the Indium composition
is 23%, as determined from X-ray di2raction experi-
ments. And as before, the shape and size of the dots
are determined from cross-sectional high-resolution
TEM observations. We have performed calcula-
tions to determine the strain tensor components for
In0:23Ga0:77As=GaAs dots. The strain distributions are
depicted in Fig. 10 for structure TPQD4. The strain
tensor components obtained here are used as input for
the electronic band structure calculations discussed in
the next section.

4. Electronic structure and optical transitions

The band structure of semiconductors is generally
altered by the presence of strain, which changes the
lattice constant and reduces the symmetry of the crys-
tal. Strain modi1es energy gaps and removes degener-
acy. Here, we take account of the strain distributions
discussed in the previous sections in calculating the
electronic structure of dots in the envelope function
approximation using an eight-band strain-dependent
k · p Hamiltonian [27]. The eight-band k · p method
represents an extension of the Luttinger–Kohn formal-
ism, which describes coupling among the light-hole,
heavy-hole and split-o2 valence bands to second order
in k, but is modi1ed to include the linear coupling be-
tween the conduction and valence band states. This is
necessary in order to correctly model conduction band
non-parabolicity. A product of strain components
and a deformation potential describes the general
form of the strain-induced modi1cation of the band
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Fig. 7. Comparison of strain components for structures PQD(1–3), characterized by base width B=12 nm, but di2erent heights: H1 =3 nm
(PQD1), H2 = 4 nm (PQD2), and H3 = 6 nm (PQD3): (a) �xx , (b) �yy , (c) �zz (strain expressed in %).
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Fig. 7. (Continued.)

Fig. 8. Cross-sectional high-resolution transmission electron mi-
croscope image of InAs quantum dots in a GaAs matrix.

structure. Typical values of deformation potentials
range from 1 to 10 eV [22]. These determine the
amount of band structure modi1cation and enter the
calculations as material parameters given in Table 2.
In our calculations, we neglect the lack of inversion
symmetry in the zincblende structure and conse-
quently ignore the small coupling of the conduction
band to shear deformations. In the strain-dependent
Hamiltonian, the non-diagonal terms containing shear
components of the strain are non-zero in our geome-
tries, except far away from the dot axis. However,
since the diagonal shear strain term of the Hamiltonian
decouples the heavy- and light-hole bands by approx-
imately 100 meV, the correction of the non-diagonal
terms in the Hamiltonian is small near the band-edge.
The resultant Hamiltonian is a matrix that is diag-
onalized using the Lanczos algorithm developed in
Refs. [28,29].
Some insight can be gleaned by examining the

strain-induced modi1cation to the band structure
corresponding to structure PQD3 in Table 1. In the
absence of strain, the con1ning potential for an elec-
tron (hole) is a square well formed by the di2erence
in the absolute energy of the conduction (valence)
band-edges in InAs and GaAs [30]. In the conduc-
tion band, the depth of the con1ning potential in this
case is about 840 meV. For holes, the potential well
is about 263 meV deep. However, because of strain,
the con1ning potential for each carrier type is shifted.
Since the strain varies with position, the con1ning
potentials will also vary with position. The material
parameters used in our computations are given in
Table 2. Under these considerations, the conduction
band can be given as

Ec(�) = E0
c + �Ec(�); (18)
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Fig. 9. Strain tensor components �xx and �zz along the z-axis for t = 0:25 (TPQD1), t = 0:50 (TPQD2), and t = 0:75 (TPQD3): (a) �xx ,
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where E0
c is the o2set of the unstrained conduction

band, which is

E0
c = E0

v;av +
!0

3
+ Eg; (19)

and �Ec is the strain-induced shift of the conduction
band which is expressed as

�Ec(�) = ac(�xx + �yy + �zz): (20)

In Eq. (19), !0 is the spin-orbit splitting, Eg is the un-
strained band gap, and E0

v;av is the unstrained average
valence band-edge. The parameter ac in Eq. (20) is
the deformation potential for the conduction band.
The e2ect of strain on the valence band depends

largely on the symmetry of the strain. The heavy- and
light-hole energy bands, Ehh

v and Elh
v , couple to the

individual strain components via the relations [31]:

Ehh
v = E0

v;av +
!0

3
+ �Ev;h − 1

2
�Ev;b; (21)

and

Elh
v = E0

v;av −
!0

6
+ �Ev;h +

1
4
�Ev;b

+
1
2

√
!2
0 + !0�Ev;b +

9
4
(�Ev;b)2; (22)

where �Ev;h = av�h, and �Ev;b = b�b. The deformation
potentials av and b are given in Table 2.
The dominant e2ect of the strain is that the dot expe-

riences a large increase in its band gap due to the con-
siderable hydrostatic pressure. The conduction band
for structure PQD3 in Table 1 has a potential well that
is 0:4 eV deep at the base of the dot, tapering o2 to a
depth of about 0:27 eV at the apex. The valence band
has a more complicated structure. If we could some-
how turn o2 the strain, the holes would be con1ned
to the InAs by a well that is only 85 meV deep. How-
ever, the presence of strain alters this considerably,
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Fig. 10. Strain tensor components in the x–z plane for structure TPQD4: (a) �xx , (b) �yy , (c) �zz , and (d) �b (strain expressed in %).

Table 2
Material parameters used in calculations

Parameter GaAs InAs InxGa1−xAs

a ( SA) 5.6503 6.0553 (5:6503 + 0:405x) [32,39,40]
Eg (eV) 1.518 0.413 (1:518− 1:580x + 0:475x2) [30,33,39,40] [T = 6:4 K]
Eg (eV) 1.424 0.324 [0:324 + 0:7(1− x) + 0:4(1− x)2] [39,40] [T = 300 K]
!0 (eV) 0.340 0.380 (0:340− 0:093x + 0:133x2) [30,38,39]
C11 (N=m2) 11.88 8.33 (11:88− 3:55x) [32,33,39,40]
C12 (N=m2) 5.38 4.53 (5:38− 0:85x) [32,33,39,40]
ac (eV) −8:013 −5:08 (−8:013 + 2:933x) [30,33,39]
av (eV) 1.16 1.00 [30,33,39]
b (eV) −1:7 −1:8 [30,33,39]
E0
v;av (eV) −6:92 −6:747 (−6:92 + 0:231x − 0:058x2) [30,33,39]

m∗
e 0:0667m0 0:02226m0 (0:0667− 0:0419x − 0:00254x2) [33,39]

Ep (eV) 25.7 22.2
[
(1:238− 0:2095x)(1− me=me) (3Eg(Eg + !0)=3Eg + 2!0)

]
[33,38]

and it, in fact, makes the dominant contribution to the
hole con1nement potential. A remarkable feature of
the valence band is that it is peaked at the apex of the

dot and near the base. This is clearly evident in the
energy band diagram presented along the z-axis for
structure PQD3 in Fig. 11.
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Fig. 11. Electron (Ve), heavy-hole (Vhh), and light-hole (Vlh)
potential pro1les for structure PQD3, plotted along the z-axis.

The con1ning potentials, inclusive of the e2ects
of strain, are piecewise continuous functions of posi-
tion. These potentials are shown in Fig. 11 for both
electrons and holes. The split-o2 valence band is suF-
ciently far o2 in energy from the heavy- and light-hole
band-edges, so it plays no role in the calculations.
Note that the heavy- and light-hole con1ning potential
wells are shown inverted. The anisotropic (biaxial)
components of the strain in the dot and barrier reduce
the symmetry of the conventional cubic unit cells,
lifting the heavy- and light-hole degeneracy. The
compressive strain in the barrier shifts the GaAs
conduction band-edge slightly above the unstrained
level of 1:52 eV. Note that in Fig. 11, the light-hole
band-edge is higher in energy than the heavy-hole
band-edge in the barrier, and at the apex of the pyra-
mid. The heavy-hole band is the uppermost band
at the base of the pyramid. The direction and mag-
nitude of the splitting of the light- and heavy-hole
bands—in the absence of appreciable shear strain
components—is dependent solely on the magnitude
and sign of the biaxial strain, �b. In those regions of
the structure where the biaxial strain is negative, the
light-hole band will be shifted upwards in energy and
the heavy-hole band downwards; in those regions
where the biaxial strain is positive, the heavy-hole
band will be uppermost. When the biaxial strain is
zero, the light- and heavy-hole bands are degenerate.
We show the electron con1ning potential in the

x–z plane in Fig. 12(a) for structure PQD3. Here, the
zero of energy is 1xed at the GaAs level. The potential
well for electrons has a depth of about 400 meV over
much of the pyramid, deepening to about 450 meV at
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the base. In the wetting layer, the potential is taken
to be identical to the potential near to the base of the
pyramid. The potential in the barrier is close to zero
since the material here is GaAs. Fig. 12(b) shows the
contour plot of the con1ning potential experienced
by heavy-hole carriers. In the regions attractive to
heavy-holes, the potential is negative. The potential
inside the well has a positive gradient from the base
towards the apex. Over this distance, the potential
changes by several hundred meV. Because of this and
the large e2ective mass for heavy-holes, one would ex-
pect charge localization near the base of the pyramid.
The contour plot for the light-hole con1ning potential
is shown in Fig. 12(c). This plot shows a slowly vary-
ing attractive potential in the barrier region above and
below the pyramid. It reaches a minimum at the apex
of the pyramid.
Several methods have been developed to calculate

the electronic structure of the square-based pyramidal
InAs dots [4,6,11]. Among these is the pseudopoten-
tial plane-wave approach used by Williamson et al.
[32]. To calculate the energy levels and electron (or
hole) wave functions we use an eight-band e2ective
mass approach. The strain e2ect is included via defor-
mation potential theory [33]. The bound energy levels
are computed as functions of quantum-dot size. The
bound states of the dot are found by numerically solv-
ing the Schr6odinger equation, which in the e2ective
mass approximation, can be written as

−˜
2

2
∇
(

1
m∗

i (r)

)
∇$n(r) + V (r)$n(r)

=E$n(r): (23)

In this expression, m∗
i (r) must be replaced by

m∗
InGaAs(r) inside the dot, and by m∗

GaAs(r) in the
matrix material; V (r) is the three-dimensional con-
1ning potential. In the framework of the eight-band
model, the wave function can be expanded as a linear
combination of the basis functions, thus

$n(r) =
8∑

j=1

Fnj(r)uj(r) =
∑
J; Jz

|J; Jz〉FJ;Jz (r); (24)

where uj(r) has the periodicity of the crystal lattice
and j is the band index. At the band-edges, these
functions are characterized by symmetry arguments as
eigenstates |J; Jz〉 of the Bloch angular momentum J .

The states |J; Jz〉 are the band-edge functions of the
Bloch state space [34]. These wave functions are, for
the s-like (1 conduction band,∣∣∣∣12 ; 12

〉
c
= |S〉| ↑〉 and

∣∣∣∣12 ; −1
2

〉
c
= |S〉| ↓〉;

(25)

while for the p-like (8; (7 valence bands, they can
be written as [34]∣∣∣∣32 ; 32

〉
v
=
(

1√
2

)
(|x〉+ i|y〉)| ↑〉;

∣∣∣∣32 ; 12
〉
v
=
(

1√
6

)
(|x〉+ i|y〉)| ↓〉

−
(√

2
3

)
|z〉| ↑〉;

∣∣∣∣32 ; −1
2

〉
v
=−

(
1√
6

)
(|x〉 − i|y〉)| ↑〉

−
(√

2
3

)
|z〉| ↓〉;

∣∣∣∣32 ; −3
2

〉
v
=
(

1√
2

)
(|x〉 − i|y〉)| ↓〉;

∣∣∣∣12 ; 12
〉
v
=
(

1√
3

)
(|x〉+ i|y〉)| ↓〉

+

(√
1
3

)
|z〉| ↑〉;

∣∣∣∣12 ; −1
2

〉
v
=−

(
1√
3

)
(|x〉 − i|y〉)| ↑〉

+

(√
1
3

)
|z〉| ↓〉: (26)

We want to point out that it is generally known that
the k · p method has some problems associated with it
when applied to calculations involving nanostructures
[33]. These diFculties include (i) the 1xed number of
Bloch functions (eight in the formalism used here),
(ii) the restriction of the validity of the method to the
Brillouin zone center, (iii) the use of the same Bloch
functions, regardless of material and strain variations,
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and (iv) the diFculty of choosing appropriate bound-
ary conditions with associated matching criteria for
the envelope functions across the heterointerfaces. In
our calculations, we take into account the variation
of mass parameters from their bulk values due to the
strain-induced band deformations. The details of the
guidelines used have been discussed by Burt [35].
The eigenvalues and eigenfunctions of Eq. (23) are

obtained by invoking periodic boundary conditions,
expanding $n(r) in terms of normalized plane-wave
states, and diagonalizing the resulting matrix. This
approach, which has also been used by Cusack et al.
[6], does not require matching of the wave functions
across the boundary between the dot and the matrix
materials. This makes the method applicable to arbi-
trary (position dependent) con1ning potentials. The
only requirement on the boundary conditions is that
the states do not signi1cantly overlap for dots adjacent
to each other.
In general, the number of con1ned states in a quan-

tum dot depends on the size of the dot and on the thick-
ness of the wetting layer. For the conduction band,
there are usually only a few bound states. The energy
spacing between the ground state and the 1rst excited
state in the conduction band typically ranges from
about 60 to 95 meV for the dot-sizes considered in
our work (see Fig. 13). We 1nd that the valence-band
states are more tightly con1ned because of the large
hole e2ective mass. The energy spacing here ranges
from a few meV to 30 meV.
In our calculations, we have neglected the Coulomb

interaction energy. This energy largely depends on
the value of the dielectric constant. As a result, dots
of the same size can belong to di2erent con1nement
regimes in materials with di2erent dielectric constants.
In III–V compounds, with a typical relative dielectric
constant of ∼13, the bulk exciton radius is ¿10 nm,
causing a structural quantum dot of similar dimension
and suFciently deep potential to be in the strong con-
1nement regime [22]. Because of this, additional bind-
ing energy from the Coulomb e2ect is negligible since
the dots are already in the strong con1nement regime.
In any case, the Coulomb interaction energy is small
compared to the separation of the ground state from
the 1rst excited state for both electrons and holes.
In Fig. 13, we show the calculated electron and hole

energy level dependence on pyramid base length. The
electron (hole) levels are plotted relative to the
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Fig. 13. (a) Electron and (b) hole quantum-dot energy levels
(ground state and 1rst two excited states), displayed as a function
of dot base size.

unstrained GaAs conduction (valence) band-edge. For
dot base dimensions smaller than ∼6 nm, no bound
electron states are predicted. Beyond 6 nm, a few
states are predicted in the conduction band. And as
stated earlier, many states are predicted in the valence
band. This is due to the large e2ective mass associ-
ated with the holes and to the nature of the light-hole
con1ning potential whose smoothly varying form
leads to a quasi-continuum of tenuously bound states.
We have also determined the envelope functions for

the 1rst few con1ned states in the dot. Fig. 14(a), for
example, shows the modulus-squared envelope func-
tion for the Ee0 state for structure PQD3; this function
is plotted in the y–z plane, cutting through the pyramid
and the wetting layer. The relatively isotropic char-
acter of the con1ning potential for electrons, coupled
with the small e2ective mass, results in a state that
permeates throughout the dot and penetrates into the
sides of the pyramid. Fig. 14(b) is the hole envelope
function in the y–z plane for the state Eh0. Unlike the
ground state in the conduction band, the hole ground
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Fig. 14. The squared absolute magnitude of the envelope function for structure PQD3 across the y–z plane for energy levels: (a) Ee0, (b)
Eh0, (c) Eh1, (d) Eh2.

state is con1ned to the base of the dot. In Fig. 14(c)
and (d), we show the envelope functions for the hole
excited states Eh1 and Eh2.

The calculated transition energies for the ground
state, Ee0 →Eh0, and for the 1rst Ee1 →Eh1, and sec-
ond Ee2 →Eh2 excited states for pyramids of various
base dimensions are shown in Fig. 15(a). From Fig.
15(a), the calculated fundamental transition energy for
a pyramid with a base length of 16 nm is 1:10 eV.
This value is in good agreement with the experimen-

tally determined transition peak at 1:098 eV shown
in Fig. 15(b). The same good agreement is found
between the calculated and measured peak lumines-
cence energy values for a 20-nm-base pyramidal quan-
tum dot; the measured experimental data is shown in
Fig. 15(c).
The energy splitting between the ground state and

1rst excited hole state of 30 meV in Fig. 15(b) is in
good agreement with a recent experimental study of
the sub-level structure which measured a di2erence
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Fig. 15. (a) Calculated transition energies for pyramidal QDs:
Ee0–Eh0; Ee1–Eh1, and Ee2–Eh2, as functions of QD base width;
(b) Fundamental (Ee0–Eh0) transition energy measured by PL for
a dot of base B=16 nm; and (c) for a dot of base width B=20 nm.

of approximately 27 meV [36]. The Ee0 → Eh0

transition is the dominant excitation in all of the
structures studied.
We now consider the computation of the electronic

energy levels in truncated pyramidal quantum dots.
The basic approach is similar to what has already
been discussed in this paper. For truncation factors
ranging from 0.25 to 0.75, we show the con1ning
potentials for electrons and holes in Fig. 16. The
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Fig. 16. Con1ning potentials for electrons and heavy-holes, along
z-axis, for structures TPQD(1–3) with truncation factors: t =0:25
(TPQD1), t = 0:50 (TPQD2), and t = 0:75 (TPQD3).

bound states are determined by numerically solv-
ing the Schr6odinger equation within the context of
approximations similar to those used in the ideal
pyramid case. The calculated energy levels for the
ground state and two excited states in the conduction,
as well as the valence bands are shown in Fig. 17 for
a range of truncation factors. As a speci1c example,
we calculated the energy levels for structure TPQD3,
whose dimensions are given in Table 1; the TEM
micrograph of this structure was shown in Fig. 8.
The 1rst three con1ned electron energy levels, mea-
sured with respect to the unstrained GaAs conduction
band-edge, are Ee0 = 1:404 eV; Ee1 = 1:426 eV, and
Ee2 = 1:428 eV. In the valence band, the correspond-
ing heavy-hole levels—again measured with respect
to the unstrained GaAs valence band-edge—are
Eh0 = 328:79 meV; Eh1 = 343:88 meV, and Eh2 =
345:74 meV. The transition energies, for the allowed
transitions, are shown in Fig. 18(a); the fundamental
transition, Ee0 → Eh0, is at 1:076 eV. This energy
is in good agreement with the experimentally deter-
mined peak of 1:08 eV for the photoluminescence
emission spectrum shown in Fig. 18(b) for structure
TPQD3. The photoluminescence measurements were
carried out using an Ar+ ion laser (,=488 nm) as an
excitation source. The emitted radiation was detected
with a liquid-N2-cooled Ge detector.
In devices such as near-infrared lasers and

mid-infrared detectors, the preferred medium in the
active region is often an (In,Ga)As=GaAs, rather than
an InAs=GaAs quantum-dot superlattice. In this case,
it becomes necessary to perform the energy level
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Fig. 17. Ground state and 1rst two excited states for electrons
and heavy-holes for structures TPQD(1–3) with truncation factors:
t = 0:25–0:75.

calculations for (In,Ga)As dots. We have per-
formed such calculations for truncated pyramidal
In0:23Ga0:77As dots. The parameters used in the calcu-
lations are given in Table 2. For illustrative purposes,
we have used the truncated structure TPQD4 in Table
1. The fundamental transition energy, Ee0 → Eh0, for
such a structure is calculated to be 1:126 eV. In the
conduction band, the electron ground state of such
a dot is separated by about 107 meV from the 1rst
excited state. These computed values are in good
agreement with the photoluminescence and infrared
absorption data obtained at 300 K [37].

5. Conclusions

The relaxation of strain and its residual compo-
nent in lattice-mismatched epitaxy is responsible
for the self-organization of quantum dots in the
Stranski–Krastanow crystal growth mode. Beginning
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Fig. 18. Ground state and 1rst excited state transition energies
for structures TPQD(1–3) with truncation factors: t = 0:25–0.75:
(a) calculated, (b) measured.

from this premise, we have calculated the strain
distributions in pyramidal and truncated pyramidal
(In,Ga)As=GaAs quantum dots using a method based
on Eshelby’s inclusion theory of continuum elastic-
ity. It is found that the hydrostatic component of the
strain is mostly con1ned within the dots, while the
biaxial strain is transferred from the dot to the barrier
material. By taking into account the inNuence of the
strain on the band gap of the dots, we have solved
the three-dimensional, e2ective mass, single-particle
Schr6odinger equation for the electronic energy levels
in the dot. We 1nd that strain plays a major role in
the energy structure of the quantum dots. For the
pyramidal geometry considered here, the electronic
energy levels are also a sensitive function of the base
length.
The results of our calculations are in good agree-

ment with those reported in the literature, even
though our method is considerably simpler that those
used by others [4,20]. For the fundamental transition
of a ground state electron in the conduction band
recombining with a hole in its ground state in the



V.-G. Stoleru et al. / Physica E 15 (2002) 131–152 151

valence band, we 1nd that our experimental results
also agree with calculations.
In summary, we have developed a simple method

for rapidly calculating strain in embedded quantum
dots. The method allows one to determine the inter-
dependence of strain on shape, and by extension, the
e2ects of strain on con1ned energy levels in quantum
dots.
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Appendix A

This section gives the more general mathematical
expressions for the stress distributions inside pyrami-
dal InAs quantum dots of di2erent degrees of trunca-
tion. The expressions are obtained by integrating
Eq. (6). They are given as functions of the space co-
ordinate z, in the growth direction. The strain compo-
nents follow immediately from Hooke’s law, as given
in Eq. (15). The following de1nitions are used in the
expressions: the pyramid base width is B = 2a; the
height, in the absence of truncation, is H ; the param-
eter t is the degree of truncation; and h is the height
of a truncated pyramid. The stress component �xx, for
example, is written as a summation over three terms:

�xx =
h

a2 + h2
E�0

4�(1− �)

×[�′
xx(1) + �′

xx(2) + �′
xx(3)]; (A.1)

where the terms �′
xx(1); �

′
xx(2), and �′

xx(3) are given as

�′
xx(1) =

4a2√
2a2 + h2

{
ln
[−2a2(1− t)− h(z − ht)√

2a2 + h2

+
√
2a2(1− t)2 + (z − ht)2

]

−ln
[−2a2 − hz√

2a2 + h2
+
√
2a2 + z2

]}
: (A.2)

�′
xx(2) = 2h

{
tan−1

[
−(z − ht)√

2a2(1− t)2 + (z − ht)2

]

− tan−1

[
(z − ht)√

2a2(1− t)2 + (z − ht)2

]

+ tan−1
[

z√
2a2 + z2

]
− tan−1

[ −z√
2a2 + z2

]}
;

(A.3)

and

�′
xx(3) = a ln

{
[a(1− t) +

√
2a2(1− t)2 + (z − ht)2]

×
[
2a2
(
1− z

h

)2
− a+

√
2a2 + z2

]

× 2a2
(
1− z

h

)2
(−a+

√
2a2 + z2)

}

− a ln
{
[−a(1−t)+

√
2a2(1−t)2+(z−ht)2]

×
[
2a2
(
1− z

h

)2
+ a+

√
2a2 + z2

]

× 2a2
(
1− z

h

)2
(a+

√
2a2 + z2)

}
:

(A.4)

Similarly, for �yy we derive the following relations
along the z-axis:

�yy =
h

a2 + h2
E�0

4�(1− �)
[�′

yy(1) + �′
yy(2) + �′

yy(3)];

(A.5)

with �′
yy(1); �

′
yy(2), and �′

yy(3) given as

�′
yy(1) =

4a2√
2a2 + h2

{
ln
[−2a2(1− t)− h(z − ht)√

2a2 + h2

+
√
2a2(1− t)2 + (z − ht)2

]

−ln
[−2a2 − hz√

2a2 + h2
+
√
2a2 + z2

]}
; (A.6)
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�′
yy(2) = 2h

{
tan−1

[
−(z − ht)√

2a2(1− t)2 + (z − ht)2

]

−tan−1

[
(z − ht)√

2a2(1− t)2 + (z − ht)2

]

+ tan−1
[

z√
2a2 + z2

]
−tan−1

[ −z√
2a2 + z2

]}
;

(A.7)

�′
yy(3) = a ln

{
[a(1− t) +

√
2a2(1− t)2 + (z − ht)2]

×
[
2a2
(
1− z

h

)2
− a+

√
2a2 + z2

]

×2a2
(
1− z

h

)2
(−a+

√
2a2 + z2)

}

− a ln
{
[−a(1−t)+

√
2a2(1−t)2+(z−ht)2]

×
[
2a2
(
1− z

h

)2
+ a+

√
2a2 + z2

]

×2a2
(
1− z

h

)2
(a+

√
2a2 + z2)

}
:

(A.8)

The other stress component, �zz, follows from:

�zz =
2E�0

(1− �)
− (�xx + �yy): (A.9)
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