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Abstract

The optical emission spectrum of a quantum dot array is computed for a series of cases
in which a nanometer scale microscope tip indenter is used to impose increasing elastic strain
on the sample. The system under consideration consists of approximately 30 self-assembled
In0:55Al0:45As quantum dots buried in a matrix material of Al0:35Ga0:65As; the indenter is a tapered
optical 6ber tip used to collect emitted light from the array while simultaneously imposing
strain on the sample. A continuum analysis is used to compute the con6ned electron and hole
energies and wave functions in the presence of the imposed elastic indentation strain 6eld. The
analysis includes the consideration of exciton binding energy e&ects, which are found to be
small for quantum dots in the size range of interest. From the computed energy states, the
optical conductivity of the system is evaluated using simple scattering rate theory. The blue-shift
in light emitted by individual dots predicted by the analysis agrees well with experimental
observations by Robinson et al. (Appl. Phys. Lett. 72 (1998) 2081). Finally, a simple dislocation
nucleation estimate based on a Rice–Thomson-type analysis is developed for the system. The
estimate supports the observation that dislocation activity in the single crystalline sample may be
responsible for the experimentally observed optical emission quenching when indentation exceeds
a critical depth.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Nanometer scale semiconductor structures are of increasing interest for a variety
of electronic and optical applications. Quantum dots, or nanometer scale structures
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used to quantum mechanically con6ne charge carriers, are used as photo-detectors and
emitters in low threshold-current lasers (Bimberg et al., 1999, and references contained
therein), as well as more recently for nano-biological devices (Winter et al., 2001)
and quantum computing elements (Biolatti et al., 2000). Semiconductor quantum dots
are fabricated either through “top-down” approaches based on lithographic methods, or
through “bottom-up” self-assembly based approaches (Leon et al., 1995). Self-assembly
is a convenient route to large ensembles or arrays of dots, but control over size, shape,
and spatial regularity is problematic. For this reason, characterization and modeling
methods must be capable of resolving both individual dot features and small groups of
dots in which collective e&ects and properties can be observed.
Self-assembled quantum dots are grown by heteroepitaxial deposition methods, free

of defects, and with perfectly coherent bimaterial interfaces. Dislocations have dele-
terious electrical e&ects and are avoided by design, but elastic strain due to lattice
mismatch is often as large as several percent. It may vary dramatically over lengths
as small as several nanometers because of free surfaces, interfaces, and other sharply
de6ned geometrical features, and it strongly a&ects electrical and optical properties of
the devices. Numerous investigators report on this e&ect; Johnson and Freund (2001)
formulate the continuum mechanics theory of strain e&ects on quantum con6nement in
semiconductor heterostructures.
Interest in semiconductor nanostructures is increasingly driven by advances in ex-

perimental characterization methods, which allow for atomic scale imaging resolution
and optical spectral measurements at length scales far below the wavelength of visible
light. Near-6eld scanning optical microscopy (NSOM), for example, is used to excite
or collect near-infrared emitted light from small groups of nanometer scale quantum
dots and is able to resolve the emission characteristics of individual dots (Robinson
et al., 1998; Robinson et al., 2001). The microscope tip used in NSOM is a tapered
optical 6ber with a Hat aperture having a diameter much smaller than a micron.
Compelling recent NSOM measurements by Robinson et al. (1998) on self-assembled

quantum dot arrays are considered in the present work. In this study, Robinson and
co-workers use an NSOM tip with a 250 nm wide Hat aperture to collect emitted light
from a self-assembled quantum dot array while simultaneously imposing an elastic
strain by indenting the sample with the tip. The e&ect of the externally imposed strain
is to increase (decrease) the energy (wavelength) of the light emitted from individual
dots in the array. Simple estimates by Robinson and co-workers ascribe the direction of
the shift to the inHuence of strain, but the prediction yields a shift more than an order of
magnitude larger than observed in the experiment. The estimate reported by Robinson
et al. (1998) also predicts a uniform strain shift from dot to dot in the sample. The
experiment shows, however, that for indentation depths larger than a particular value,
some quantum dots cease to emit light while others continue to exhibit the strain-related
blue shift in emitted light.
In the present work, the problem of indentation on an array of buried self-assembled

quantum dots is considered. The approach is to incorporate the full strain 6eld due to
indentation by a rigid cylindrical indenter into the quantum mechanical analysis that
yields an optical spectrum for the sample. Material properties are chosen to repre-
sent the system measured by Robinson et al. (1998), although the geometrical details
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Fig. 1. Finite element mesh and schematic of the quantum dot system under consideration. The substrate
and capping layer (elements omitted for clarity) are composed of Al0:35Ga0:65As, while the quantum dots
and wetting layer are In0:65Al0:45As. Typical dot diameters are approximately 20 nm.

of the quantum dot array are taken from results of previous morphological studies
by Zhang and Bower (1999). The particular sample under consideration is shown in
Fig. 1. An e&ort is made to correctly account for the relationship between measured
compression in the experimental work and the actual indentation depth, which partially
accounts for the initial overestimate of the strain induced optical shift by Robinson
et al. (1998). Accounting for the full strain tensor 6eld further increases the accuracy
of the prediction to within a factor of order one. The present work also considers
some other features of the quantum dot array problem, such as the e&ect of exciton
binding energy, or the Coulombic attraction between the electron/hole pair responsible
for optical emission. This e&ect is found to be signi6cant for computed optical spectra
in atomistic analyses (Zunger, 2001), but here it is shown to be small due to the re-
alistic size of the quantum dots under consideration. Finally, a simple estimate based
on a Rice–Thomson-type analysis yields an approximate indentation depth at which a
dislocation would be expected to nucleate in the quantum dot sample. This estimate,
combined with an analysis of the electrostatic perturbation due to an electrically active
dislocation, justi6es the premise that dislocation activity may be responsible for the
observed optical emission quenching at large indentation depths.

2. Electron con�nement and optical spectra in self-assembled quantum dot arrays

To compute the optical emission and absorption spectra for a semiconductor quantum
structure such as an array of quantum dots, electron and hole energy levels and wave
functions are needed. The approach taken here is to consider the energetics of a single,
additional charge carrier in a continuum approximation, in which the conduction and
valence electrons intrinsic to the material are treated in an average sense using an
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e&ective potential. The ballistic charge carrier is assigned a tensor e&ective mass, which
describes the dynamics of the carrier when subjected to an applied electric 6eld. The
e&ective mass tensor bears the symmetry of the underlying crystal structure which may
be elastically strained, but which is assumed to be free of defects. The approach is
described in detail from a mechanics perspective by Johnson and Freund (2001), and
has been used by others (Jiang and Singh, 1997; Johnson et al., 1998; Pryor, 1998,
for example) to describe a variety of quantum semiconductor devices. The form of the
Hamiltonian describing the behavior of the single charge carrier is given by Luttinger
and Kohn (Singh, 1993) and is derived from k · p theory.
Within this framework, the single charge carrier behaves according to the Schrodinger

equation, written as

− ˝2
2m

∇iL
��
ij ∇j�� + V���� =−i˝ 9 

�

9t ; (1)

where � is the wave function of the carrier, V is the spatially varying potential 6eld
through which the charge carrier does work, and L is the Luttinger–Kohn Hamiltonian
containing the e&ective mass tensor parameters. The indices � and � represent the
energy subbands that form a basis for the wave function of the charge carrier; this
basis may include 1, 2, 4, 8, or more subbands within the conduction and valence
bands of the material. A larger subband basis increases the energy accuracy of the
calculation (Pryor, 1998a) but at a computational cost on the order of the number of
subbands squared. The results shown here are obtained in the single subband (tensor
e&ective mass) approximation, where the energy levels of the conduction electrons and
valence electrons are computed separately. The modal dynamics of an electron or hole
are governed by the solutions to the steady-state form, or

− ˝2
2m

∇iL
��
ij ∇j�� + V���� = E��: (2)

The potential 6eld V is input to the calculation based on the local composition of the
material and the local state of strain in the material. Other possible contributions to V ,
not considered here, include an applied electric potential or a piezoelectric potential.
Thus, V can be written as

V�� = V��
comp + V��

strain ; (3)

where the compositional contribution of the potential is due to the energy band mis-
alignment between adjacent layers (e.g. dot layer/capping layer) in the heterostructure.
This contribution ranges from 0.1 to 1:5 eV depending on the layer compositions and
the subbands under consideration. The strain portion of the potential couples the elastic-
ity problem to the quantum mechanical behavior of the charge carrier under consider-
ation. This coupling is quanti6ed through deformation potential theory, which converts
an elastic strain �ij into an electrostatic potential V��

strain through the scalar product
given by

V��
strain = D��

ij �ij; (4)
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Fig. 2. Con6ning electrostatic potential for (a) electrons and (b) heavy holes for the un-indented quantum
dot array. The heavy hole con6ning energy is much shallower than the electron con6ning energy. Both
cases show strong strain sensitivity, including regions of strain-enhanced con6nement within the individual
quantum dots.

where D��
ij is the deformation potential tensor 6eld in the material, a local material

property. The components of the deformation potential tensor have values on the order
of 1–10 eV. Thus, depending on local composition and strain, the elastic contribution
may approach the magnitude of the compositional contribution to the electrostatic po-
tential. A potential pro6le for an array of quantum dots with only the e&ects of material
composition and elastic mismatch strain is shown in Fig. 2.
Material inputs to the electron/hole modal analysis include the e&ective mass tensor

components of the charge carriers, and the deformation potential tensor components
for the material. The potential 6eld V is computed from the elastic strain which until
now includes only the mismatch strain associated with the deposition and assembly
process. The mismatch elastic strain 6eld is obtained from the same analysis (Zhang and
Bower, 1999) that gives the initial quantum dot morphology con6guration. The material
constants (masses and deformation potentials) used in the calculations described here
are listed in Table 1. The table lists the Luttinger–Kohn parameters, from which the
e&ective mass tensor components are obtained, and the deformation potentials, from
which the conduction and heavy hole bandedge shifts are obtained.
From these properties, and a quantum dot array con6guration such as the ensemble

shown in Fig. 1 (with elements added to model a suitable capping layer), the modes
or energy states for the electrons and holes are computed. Eq. (2) is solved using a
standard Galerkin 6nite element method described in detail by Johnson and Freund
(2001). The lowest lying energy states represent the most tightly con6ned electrons or
holes; these states dominate the optical spectra in the energy range of interest. Previous
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Table 1
Input properties for electronic con6nement calculation

Property Barrier: Al0:35Ga0:65As Well: In0:55Al0:45As

Bandgap (eV) 2.08 1.63

Luttinger–Kohn
E&ective mass parameters:

me 0.0961 0.080
�1 5.63 12.77
�2 1.47 4.87
�3 2.23 5.59

mhh; x = 1=(�1 + �2)
mhh; z = 1=(�1 − 2�2)

Deformation potentials (eV)
ac −6.635 −5.332
av 1.619 1.662
b −1.630 −1.665
�Ec = ac(�xx + �yy + �zz)
�Ehh = av(�xx + �yy + �zz) + (b=2)(�xx + �yy − 2�zz)
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Fig. 3. Cross-sectional views of low energy con6ned electron states in the un-indented quantum dot array.
(a) The lowest energy or ground state shows spherical or s-type symmetry in the probability density dis-
tribution; (b) The second excited state shows two-fold or p-type symmetry in the plane of the quantum
dot array. Higher energy states (not shown) include energy levels that are delocalized and split between
multiple dots.

investigators compute energy levels in a similar manner for individual quantum dots;
here, the spectrum of states includes localized modes for all dots in the array as
well as extended modes that couple multiple dots in the array. Fig. 3 shows two
representative low-energy (tightly con6ned) states. Delocalized states generally occur
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at energies outside the range of interest here. These states are used to explain various
6ne structure and resonances in the optical spectra of the systems (Johnson et al.,
2003).
Optical properties are obtained from the computed energy levels for electrons and

holes in the quantum dot array. The connection between charge carrier spectra and op-
tical spectrum is made by considering the optical conductivity of the system. The real
part of the optical conductivity, or the optical absorption, exhibits special frequencies
at which absorption (and therefore emission) is most highly e&ective. These frequen-
cies are found by constructing the relative interband absorption spectrum according to
(Davies, 1998)

�1(!) =
2�
�!

(
e
m0

)2 ∑
i; j

|e · pi; j|2|〈i|j〉|2�(Ei − Ej − ˝!): (5)

The constants �, or volume of the system, electron charge e, and mass m0, do not
a&ect the relative absorption over the narrow range of frequencies ! of interest. The
6rst term in the summation over conduction and valence states i and j is constant
for 6xed energy subbands, taken here to be the conduction electrons and the heavy
holes, transitions between which dominate the spectrum. This part of the optical matrix
element represents the scalar product between the polarization vector of the incident
light and the momentum vector of the charge carrier. The second squared term in
the summation represents the spatial overlap integral between the wave function of
states i and j. This part of the matrix element determines the relative intensity of light
emitted or absorbed through a transition between states i and j. The 6nal Dirac delta
function term matches the energy of the emitted or absorbed light, ˝!, to the energy
di&erence between states i and j. The overlap and delta function terms reduce in a 6rst
approximation to the so-called Nn= 0 rule, which holds that the dominant transitions
for a single potential well (quantum dot) are due to pairs of the ground electron/hole
states, 6rst excited electron/hole states, second excited electron/hole states, etc. Fig. 4
shows a one-dimensional schematic of the transition process between electrons and
holes responsible for emission or absorption. This type of analysis for quantum dot
arrays is 6rst described by Johnson et al. (2002).
From this analysis, an optical emission/absorption spectrum is readily generated.

The overlap integral term, which determines the strength of the transition between
two electron and hole states i and j, is represented graphically in an overlap diagram
of the kind shown in Fig. 5. In this plot, the intensity of each possible transition
in the system is shown in color at the point corresponding to the electron and hole
energy involved in the transition. Organized in this way, the plot shows clear groups of
transitions for the array, such as transitions between s-type electrons and s-type holes,
which appear as a diagonal streak closest to the origin of the plot. Con6nement is
strongest for the lowest energy states, so overlap values between electrons and holes
tend to be largest near the origin. At higher energies there is more disorder in the plot,
as states are less strongly con6ned; near-degeneracy between multiple states leads to
additional weak transitions. At the highest energies considered here, the heavy holes
are essentially delocalized and approach wetting layer states, so all structure in the
overlap diagram is lost. An important additional feature of the plot is that horizontal
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Fig. 4. One-dimensional schematic of the band structure connection to optical transition energies. The ori-
entation of the position dimension relative to the quantum dot layer is shown inset. The computed energy
levels for electrons and holes (represented as horizontal lines) are used to predict the transition energies
(represented as vertical arrows on the right). The arbitrary zero in energy is chosen here to coincide with
the quantum well valence band edge.
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Fig. 5. Overlap diagram between electrons and heavy holes in the un-indented quantum dot array. Color of
each point represents the relative intensity of the spatial overlap or transition between the states. Dashed
lines separate diagonal streaks representing overlap between symmetry-based groups of states. There is less
structure at higher energies, particularly for the less strongly con6ned heavy holes.
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Fig. 6. Simulated emission/absorption spectrum for the un-indented array. The spectrum is comparable to
experimental PL and PLE spectra. The range of energies is due to inhomogeneous broadening typical of
experimentally measured quantum dot ensembles.

(vertical) streaks represent overlap between a single delocalized hole (electron) state
and multiple localized electron (hole) states. This observation is related to excitation
resonances in the experimentally measured optical spectrum (Johnson et al., 2003).
The overlap diagram is expanded along a single energy axis to represent an emis-

sion/absorption spectrum, shown in Fig. 6, that is comparable to experimental photolu-
minescence (PL) and photoluminescence excitation (PLE) spectra. Each line represents
a single optical transition in the system, with a spread of energies due to the variation
in size of the dots in the array. The energy of each line is obtained by summing the
electron and hole energies for transitions that appear in the overlap diagram. The main
two groups of transitions that form the spectrum are due to s/s-type electron/hole pairs
and p/s-type electron/hole pairs.

3. Exciton energies for self-assembled quantum dots

The exciton binding energy is a signi6cant correction to the k · p Hamiltonian or
e&ective mass method of computing energies for optical transitions. The exciton energy
is due to the electrostatic energy gain resulting from the attraction between the electron
and hole pair responsible for the optical transition. Zunger (2001) and others use
atomistic electronic structure methods to extensively study exciton energies and higher
order corrections due to exchange correlation energies. Atomistic methods such as the
empirical pseudopotential approach 6nd that e&ects are signi6cant in smaller quantum
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Table 2
Exciton energies for a sample of representative quantum dots

Dot 0 nm sample 20 nm sample
displacement (meV) displacement (meV)

1 5.6 5.6
2 6.0 6.0
3 5.9 6.1
4 6.3 6.3
5 6.1 6.2
6 6.2 6.2
Mean 6.0 6.1

dots (with d¡ 5 nm, for example). The analyses suggest that larger dots will show
smaller e&ects. However, these methods are prohibitively computationally intensive for
the realistic large dots considered here (with d¿ 10 nm, for example). For systems
of this size, the accepted approach is to evaluate integrals over the envelope wave
functions directly, as done by Grundmann et al. (1995).
Within this continuum approach, for an electron–hole pair described by wave func-

tions �e and �h, the exciton binding energy is given by

ECoul =
e2

4��0�r

∫ ∫ |�h(rh)|2|�e(re)|2
|rh − re| d3rh d3re; (6)

where re and rh are position vectors describing the corresponding wave functions, e is
the electron charge, and �0 and �r are the permittivity of free space and the dielectric
constant of the material, respectively. The integral ranges over volume, but the wave
functions decay exponentially outside of the individual quantum dot in which the states
are con6ned. Based on the energy states obtained as described in the previous section,
it is straightforward to evaluate the integral for all dots of interest. Typical exciton
energies are in the range of a few meV, or far less than the energies associated with
the optical transitions of interest. Furthermore, in this 6rst-order approach, the exciton
energies are insensitive to strain. The exciton energies for a few representative quantum
dots are shown in Table 2. As expected, the values are much smaller than the energies
reported by previous investigators who studied unrealistically small quantum dots.

4. E ect of nanoindentation on optical properties

A simple approach is adopted to predict the e&ects of nanoindentation strain on
the optical response of the self-assembled quantum dot array shown in Fig. 1. The
microscope tip is treated as a cylindrical Hat indenter, as shown in Fig. 7. In the
experiment, the indenter surface is smooth and Hat by design since in the process of
tapering the 6ber it is pulled until it fails by brittle cleavage fracture.
The contact between the tip and the surface is modeled using Hertzian elastic theory.

To calculate the strain induced potential 6eld, the full tensor strain 6eld must be
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Fig. 7. Schematic of the indenter/sample mechanical interaction (not to scale). The sample stage is dis-
placed vertically toward the tapered cylindrical indenter with aperture diameter 2a. The displacement is
accommodated by the compliance of the sample (indentation) and the compliance of the long optical
6ber tip.

considered, so the friction-free indenter solution of Sneddon (1946) is adopted. With
respect to the coordinate system shown in Fig. 7, the stress tensor components for an
indentation depth � and indenter radius a are derived by Sneddon (1946) as

�z =−4!("+ !)
"+ 2!

�
�a

(J 0
1 + $J 0

2 );

%zr =−4!("+ !)
"+ 2!

�
�a

$J 1
2 ;

�& =− 4"!
"+ 2!

�
�a

J 0
1 − 4!2

'("+ 2!)
�
�a

(
J 0
1 − "+ !

!
$J 1

2

)
; (7)

where the integral Jm
n contains the cylindrical Bessel function Jm and is given by,

Jm
n =

∫ ∞

0
pn−1 sin(p) exp(−p$)Jm(p') dp: (8)

From these components, the strain 6eld is computed for a given indentation depth �. In
computing the strain, it is assumed here for simplicity that the elastic constants " and
! of the multiple layers of In0:55Al0:45As and Al0:35Ga0:65As are equal. The indentation
depth � is inferred as follows from the experimental sample stage displacement. The
compliance of the long optical 6ber tip contributes a signi6cant fraction of the total
sample stage displacement. The SiO2 6ber is 750 �m in length, tapered from 5 �m in
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Fig. 8. Con6ning potential pro6le for heavy holes in the quantum dot array subjected to indentation. The
cylindrical symmetry of the indenter can be seen in the potential along the top surface of the mesh. The total
potential is due to the uniform composition e&ects, the lattice mismatch strain, and the indentation strain
that is of opposite sign in the quantum dot layer.

width down to an aperture size of 250 nm. Based on a one-dimensional analysis it is
straightforward to show that approximately 95 percent of the total system compliance
is in the optical 6ber tip. So through the experimental displacement range of 20 nm,
the sample surface indentation depth � is only 0:95 nm.
With this estimate for the range of indentation depths �, the strain-induced deforma-

tion potential is computed from Eq. (4) for any arbitrary indentation depth, with the
implicit assumption that the material behavior remains elastic. The potential pro6le for
a sample stage displacement of 20 nm (penetration of 0:95 nm) is shown in Fig. 8. The
potential 6eld varies signi6cantly from the unindented case and bears the cylindrical
symmetry of the indenter. Fig. 8 also shows the contribution of the lattice mismatch
strain to the overlap potential pro6le. It is interesting to note that to a 6rst approxi-
mation, the nature of the indentation strain o&sets the e&ects of the lattice mismatch
strain in the material. However, both sources result in signi6cant strain nonuniformity:
the lattice mismatch is nonuniform on the length scale of the individual dots; and the
indentation is nonuniform on the length scale of the array.
Electron and hole wave functions and energy levels are computed using potential pro-

6les perturbed by indentation corresponding to sample displacement from 0 to 20 nm.
From these states, optical spectra are evaluated according to the method described in
the previous sections. Overlap plots of the kind shown in Fig. 5 are constructed to
visualize the e&ect of strain on the optical spectra. Fig. 9 shows an overlap plot for
the case of 20 nm sample displacement. Several key features are apparent in the plot.
First, both the electron and hole states present in the array shift to higher energies.

This shift leads to a blue shift in the optical emission/absorption spectrum (shown in
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Fig. 9. Overlap diagram for electron and heavy hole states in the indented quantum dot array. The overlap
shows much less structure than in the un-indented case (shown in Fig. 5 for the same energy range).
Electron/hole transitions are reordered and spread in energy due to the shallow con6nement of the heavy
holes and the nonuniform applied strain. There is a positive shift in energy in both the conduction and
valence bands.

Fig. 10) relative to the unindented case (shown in Fig. 6). A second observation is
that ordering is lost between the electron and hole states, so the overlap diagram loses
structure. A primary reason for this is the signi6cantly shallower potential well for holes
than for electrons. In the shallower potential well, the hole energies are more strongly
shifted due to the indentation strain. The electron/hole strain e&ect asymmetry can be
best visualized by noting the change in slope of the s-electron/s-hole overlap streak
between the 0 nm case (Fig. 5) and the 20 nm case (Fig. 9). The indentation strain
causes a shift in the hole energy that is approximately twice the shift per unit energy
shift of the corresponding electron state than is shown in Fig. 5 for the unindented
case. Additional disorder is induced in the overlap diagram due to the spatially varying
strain 6eld associated with indentation. The indentation induces a larger energy shift in
dots near the indenter axis, for example. This e&ect is shown in Fig. 11, which plots
the emission/absorption energy shift in a quantum dot as a function of dot position
relative to the indenter axis.
By tracking the emission/absorption spectra of individual dots in the array over

the range of sample displacements measured experimentally, a direct comparison is
made between the model presented here and the experimental data. The result, for
six representative dots in the model array, is shown in Fig. 12 plotted against data
collected by Robinson et al. (1998). There are several striking di&erences between the
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Fig. 10. Simulated emission/absorption spectrum for the indented array. The spectrum is similar to the
un-indented case shown in Fig. 6, but there is a positive shift in energy and additional broadening due to
the nonuniform indentation strain.
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Fig. 11. Quantum dot photoemission/absorption shift as a function of distance from the axis of the indenter.
The shift is a scalar function of the elastic indentation strain tensor, the magnitude of which is largest directly
beneath the indenter. Variation in quantum dot size causes some variability in the energy shift.
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Fig. 12. Optical transition energy shift as a function of sample displacement for a sample of simulated
and experimentally measured quantum dots. The magnitude of the computed energy shift is in reasonable
agreement with the measured values, although the variation from dot to dot is not captured well. The three
highest energy transitions computed here are between s-hole and p-electron states.

computed and experimentally measured data. First, the computed energies are in an
energy range approximately 50 meV lower than the measured energies. This is likely
due to discrepancies between material properties used in the calculation and actual
material properties in the experimental material, particularly in the bandgap energies.
No parameters in the computational model are 6t to details of the experiment, so the
relative agreement based on previously tabulated material properties is in fact quite
good. Second, the energy shift in individual dots in the model is relatively (though
not exactly) uniform and linear over the range of displacements studied, while the
experimental energy shift varies from dot to dot and is generally nonlinear. This may be
explained by noting that the actual applied indentation strain is likely not as uniform as
assumed in the model; sources of nonuniformity include o&-angle indentation or surface
irregularities in the indenter or sample. Third, in the experimental data, several quantum
dots cease to emit light in the energy range of interest. Possible explanations include
(i) that a large nonuniform strain leads to the delocalization of hole states, or (ii) that
the presence of electrically active dislocations dramatically changes the electrostatic
potential landscape. The latter mechanism is discussed in the following section.

5. Dislocation nucleation in nanoindentation of buried quantum dot arrays

The electronic properties of nanometer scale semiconductor structures are highly
sensitive to the presence of crystalline defects. The strong local electronic properties
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of a single dislocation may render a quantum dot optically inactive. The electronic
signature of a dislocation is dominated by two features: the local elastic strain 6eld,
which changes the e&ective potential experienced by an electron; and charging of un-
satis6ed covalent bonds, which contributes an additional electrostatic component to the
potential experienced by an electron (Read, 1954). The latter e&ect, due to charging
of dangling bonds, is temperature dependent and sensitive to the precise core structure
of the dislocation. For these reasons dislocations are considered to be unacceptable in
most nanoscale semiconductor devices and are avoided by design.
The view is adopted here that a single edge dislocation threading through an em-

bedded quantum dot could a&ect the electron con6ning potential strongly enough to
quench photoemission. This is suggested as a possible explanation for the observed
quenching behavior in some of the dots measured by Robinson et al. (1998). It can be
justi6ed approximately by comparing the potential associated with the charging e&ect
of the dislocation core, which can be signi6cantly larger than the elastic strain e&ect,
to the con6nement energy scale for an electron in a single quantum dot. In the simplest
approximation, the dislocation line induces an electrostatic potential proportional to the
linear charge density ", given by

"=
nq
h
; (9)

where n=h is the number n of electrons trapped along the dislocation core per length h.
It is assumed that in this case electrostatic screening by other free charge is negligible
since the material is undoped. Thus, the potential decays logarithmically with distance
r from the dislocation, and can be written as

V =
"

4��0
ln(r0=r); (10)

where �0 is the dielectric constant of the material and r0 is a position near the dislo-
cation core taken for comparison to the position of an electron test charge. Based on
the assumption that the optical excitation of the material promotes valence electrons
into the dangling bond states associated with the dislocation core, the fractional 6lling
will approach one, as it does in a heavily doped material. With small corrections for
the precise core structure of the dislocation and other e&ects such as temperature, the
electrostatic potential V can vary by an amount on the order of the bandgap energy for
an electron moving within the quantum dot array. For example, if the dislocation core
traps one charge per nm of length, and if the dielectric constant of the 6lm material is
10 relative to the permittivity of free space, the potential di&erence as a free electron
moves from 5 to 50 nm away from the core is −0:33 eV, which would be suOcient to
dramatically alter the potential pro6le that is otherwise controlled by strain and material
properties.
The other contribution to the dislocation induced potential, from the elastic strain

6eld of the dislocation, decays as 1=r with distance r from the dislocation core. The
strain induced potential associated with a pure edge dislocation has a positive/negative
asymmetry across the dislocation line due to the tensile/compressive nature of the dis-
location elastic strain 6eld. So while there is a spatial nonuniformity in the dislocation
potential due to strain, in the simplest case the strain induced portion of the potential
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decays more quickly than the electrostatic contribution and leads to no net shift of the
con6ning potential.
Using standard Hertzian elastic contact theory, a simple estimate is developed to

predict the depth to which a nanoindenter would have to penetrate before a dislocation
would be expected to nucleate in the sample. In this framework, one would expect
dislocation activity once penetration exceeds a critical depth, and in the view adopted
here, quenching of photoemission in at least a subset of the quantum dots in the sample
would then be expected. The nucleation estimate is based on a criterion similar to that
of a fracture analysis of Rice and Thomson (1974), developed by Shenoy et al. (2000)
for plane strain indentation, as follows.
For the case of a rigid Hat axisymmetric indenter of diameter 2a, dislocation nucle-

ation is considered possible when the indenter displaces the sample surface a critical
distance � or greater. The critical depth � is found by considering the force balance
on a prismatic loop nucleating at a depth d0 below the surface. The force tending to
pull the dislocation loop out to the surface is due to the dislocation image 6eld. For
the case of a pair of in6nite parallel edge dislocations (plane strain) the image force
is given by Shenoy et al. (2000) as

fup =
b
4�

2!("+ !)
("+ 2!)

(
a6 + 3d2

0a
4 + 6d4

0a
2

(d2
0 + a2)3

)
; (11)

where b is the Burgers displacement, and ! and " are the LamQe elastic constants. For
the axisymmetric case the term containing the depth d0 and the diameter a will di&er
by a factor of order one. It can be assumed that as the ratio a=d0 increases, the image
forces for the axisymmetric case approach the plane strain result. The competing force,
tending to push the dislocations into the sample, is due to the stress 6eld of the indenter.
The full 6eld elasticity solution to the axisymmetric problem is due to Sneddon (1946);
the driving force is given by

fdown =
−√

2!("+ !)
("+ 2!)

�
�a

√
a
d0

: (12)

When the competing forces balance at a reasonable dislocation depth d0, typically
taken as a single Burgers distance b, the critical depth � can be found. An additional
contribution to the energetics of dislocation nucleation, due to the formation of a surface
step along the indenter edge, is neglected here. Shenoy et al. (2000) give the expression
for the step energy correction for the plane strain case. In the limit that a�d0, as is
the case for the indenter/sample system under consideration, � is given to within a
constant of order one by

� ∼= b
√

a
d0

: (13)

For the Al0:35Ga0:65As matrix material surrounding the quantum dot array, the crude
estimate for � is approximately 5 nm. In the experiments performed by Robinson et al.
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(1998), optical emission is quenched at a sample displacement of 10 to 20 nm, which
corresponds to an indentation depth of approximately 1 nm. The nucleation crite-
rion model assumes that the variation in elastic properties between the capping ma-
terial and the dot material does not a&ect the elastic 6elds, and it ignores atomic
scale features of the indenter. This simple estimate shows it is plausible, neverthe-
less, that the indentation is deep enough to approach the point at which dislocation
nucleation is energetically favored. The details of this problem are currently under
investigation.

6. Summary and conclusions

The e&ect of nanoindentation on the optical spectral properties of a self-assembled
quantum dot array is well-described using a single-electron Hamiltonian approach with
strain accounted for using deformation potential theory. It must be emphasized that
while atomistic electronic structure approaches more accurately predict details of in-
dividual dot spectra, the simple model used here is the only computationally viable
way to consider the coupled mechanics/physics problem for an entire array of quan-
tum dots. Furthermore, by using as a model geometry the results from a morphology
simulation, the problem of indentation on a quantum dot array can be simulated in a
complete sense without recourse to parameter 6tting based on any data speci6c to the
experiments of interest.
The predicted optical spectra and indentation strain e&ect on the optical spectra agree

well with the experimental results of Robinson et al. (1998). In particular, while the
experimental and computed optical transition energy range is in disagreement by a
small amount due to the initial choice of bandgap energies in the model, the di6er-
ences between transition energies agree closely. And although the e&ects of nonuni-
form indentation strain were not considered in the model, the relatively uniform shift
predicted by the model agrees quite satisfactorily with the average shift observed ex-
perimentally. This is encouraging given the order-of-magnitude discrepancy between
the measured shift and the initial estimates made by Robinson et al. (1998) based on
simple one-dimensional mechanics. It is important to note, also, that the strain e&ect
over the range of indentation considered here is not necessarily linear, due both to the
di&erence in con6nement energies for the electrons and holes in the material as well
as the observed delocalized states that occur at higher energies.
The small and relatively size- and strain-insensitive value of the exciton binding

energy for the quantum dots is an important conclusion. For a representative sample
of quantum dots in the array, the exciton binding energy was nearly constant at ap-
proximately 6 meV, which is small relative to the con6nement energy scale of roughly
0.5–1:0 eV. The exciton energy can be viewed as a second-order shift in the optical
transition energies due to the Coulomb interaction energy of the electron/hole pair. But
for dots of this realistic 20 nm size, the small shift is nearly negligible when compared
with the uncertainty in the bandgap energy, for example.
Finally, the justi6cation of the possibility of dislocation quenching e&ects is a key

result that has not been considered in the literature on strained quantum dots. The crude
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estimate of the indentation depth required to nucleate a dislocation gives an argument
for the possible presence of dislocations on continued indentation. Based on simple
electrostatic arguments, the perturbation due to charging of a dislocation core can then
be shown to be on the order of the con6nement energy scale. This would strongly a&ect
the spectrum of electron and hole states in the material and could arguably “quench”
the photoemission and absorption properties of individual dots.
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