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Abstract

Charge transport through the crystal lattice of a nanoelectronic device occurs quantum mechan-
ically. Incompatible elastic strain introduced during fabrication of a device modi2es the lattice
and, therefore, its functional characteristics can be a3ected. In this article, a computational model
for assessing this in&uence is described. Consequences of strain which are expected to be sig-
ni2cant for model development are identi2ed and the modi2cations necessary in the Schrodinger
equation, the governing equation for transport, to account for strain are indicated. The densities
of con2ned electronic states which arise in a particular columnar SiGe device con2guration are
determined for a range of column diameters by means of the numerical 2nite element method,
providing a quantitative illustration of the in&uence of strain on device characteristics. ? 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

While the function of microelectronic devices—the control and manipulation of elec-
tric charge—is nonmechanical, stress introduced during fabrication can play a signi2-
cant role both in the fabrication process itself and in the eventual electronic function of
a device. The focus here is on the second of these issues. The purpose is to outline a
modeling strategy which is being developed for quantitative assessment of the in&uence
of mechanical strain on the functional characteristics of nanoelectronic devices.
The point of making semiconductor heterostructures is to exploit band edge o3sets

for con2nement of electrons or holes. In this process of band engineering, epitaxial
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strain becomes a design parameter due to its in&uence on band edge energies. The role
of uniform elastic strain from this point to view is reviewed by O’Reilly (1989) and
by Yu et al. (1992).
The pre2x nano is ubiquitous in the engineering and scienti2c literature nowadays,

but its meaning is often vague. In the case of electronics, it is usually understood
to imply that the mean-free-path of charge carriers between scattering sites is large
compared to device dimensions. In such a case, charge transport is wave-like and is
therefore appropriately described within the framework of quantum mechanics (Weis-
buch and Vinter, 1991; Ferry and Goodnick, 1997). Thus, device modeling cannot
be approached simply by extrapolating existing methodologies developed for di3usive
transport in conventional devices.
The potential bene2ts to be realized from development of nanoelectronics are enor-

mous. The eIciency of a microelectronic processor or memory chip is enhanced by
increasing device density on the chip, by decreasing power consumption per device, or
by reducing device response time. Order of magnitude improvements in each of these
aspects are within reach. From a purely scienti2c point view, measurement of electronic
transport characteristics is a means of spectroscopic interrogation of the electronic struc-
ture of the material, and quantitative modeling is required for interpretation of such
experiments. Reliable models of transport processes in nanoelectronic devices which
relate the material, processing and con2gurational features to functional characteristics
of real devices are required to serve both the engineering and scienti2c objectives.
The motion of a carrier which is con2ned to a quantum well, a quantum wire or a

quantum dot by surfaces or interfaces is unrestricted in two, one and zero space dimen-
sions, respectively; these con2ning structures are collectively known as low-dimensional
systems. The in&uence of nonuniform strain 2elds on band alignments and carrier con-
2nement in low-dimensional systems was studied by Yang et al. (1997). They com-
puted nonuniform strain 2elds in several heterostructures by means of the 2nite element
method, and deduced band edge energy shifts on the basis of deformation potential. In
recent work, the formulation introduced by Luttinger and Kohn (1955) for considering
quantum mechanical 2elds which vary slowly on the atomic scale has been adopted
as a basis for numerical solution of the steady-state Schrodinger equation in the pres-
ence of strain-modi2ed potential 2elds, thereby extracting information about functional
characteristics of strained heterostructures (Johnson et al., 1998; Johnson and Freund,
2001).

2. A device con�guration

All types of nanoelectronic devices which achieve con2nement without use of electric
2elds rely on a con2guration with a small material volume of one semiconductor
material (a quantum dot or quantum wire) embedded within another semiconductor
material, forming a semiconductor heterostructure. With proper selection of materials,
the interfaces provide barriers which con2ne charge. Perhaps the simplest exploitation
of quantum e3ects in this way is the resonant tunneling diode, depicted schematically in
Fig. 1. It consists of a potential well of a few nanometers width between two insulating
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Fig. 1. Schematic diagram of a resonant tunneling device with two con2ned state energies. Note that peaks
in current–voltage response correspond to energies of con2ned states.

barriers of similar width. If a charge carrier is con2ned in the well, quantum properties
restrict its energies to one of a 2nite number of relatively high levels. If there is to be
a current &ow, the only way for carriers which are not suIciently energetic to bypass
the barriers is for the carriers to tunnel through the barriers. An imposed bias voltage
on the device can elevate the energies of the available carriers to match the energy
of the lowest con2ned state. In this state quantum mechanical tunneling, an energy
conserving process, becomes possible. If the bias is further increased so that it falls
between the con2ned state energy levels of the well, this energy correspondence is lost
and the current falls. This behavior results in a dependence of current on bias voltage
with peaks de2ned by the energies of con2ned states within the well. The connection
between resonant peaks and energies of con2ned states is exploited in the modeling
strategy which follows.

3. Strained heterostructures

E3orts to fabricate semiconductor heterostructures for quantum device applications
have given rise to a wealth of interesting and important research issues in mechan-
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Fig. 2. A columnar semiconductor heterostructure with a SiGe quantum well layer between Si barrier layers,
and with SiGe source and drain regions with gradation in Ge content. Device diameter is typically submicrum
and layer thicknesses are a few nanometers.

ics (Freund, 1999), but such matters are outside the scope of the present discus-
sion. Here, it is only noted that such con2gurations have certain common features
which are important to take into account when developing quantitative models. For
one thing, the material structures of interest must be free of extended defects. This
condition is dictated by the requirement of functional uniformity among devices. The
joined materials are typically of the same crystal class, say diamond cubic or zinc
blende, and of the same crystallographic orientation. Materials are selected primar-
ily on the basis of their electronic properties, and use of material combinations for
which the stress free lattice parameters di3er by as much as a few percent is com-
mon. In such cases, the kinematic constraint of epitaxy across the interface results in
a residual elastic strain 2eld which scales in magnitude with the lattice mismatch.
Furthermore, due to the geometrical con2gurations necessary for con2nement, the
strain 2elds are spatially nonuniform. Because the electronic characteristics of a ma-
terial depend on the lattice geometry, the nonuniformity in strain results in spatially
nonuniform electronic characteristics.
To illustrate the degree of strain nonuniformity which can arise, consider the case of

the columnar resonant tunneling diode illustrated in Fig. 2. Suppose that the well is a
Si1−sGes alloy where s is the atomic fraction of Ge, the barrier layers are Si, and the
Ge content in the alloy is linearly diminished with distance from the barrier on each
side. The lattice mismatch between Si1−sGes and Si is 0:042s. Suppose that the device
is formed lithographically from a large area layered 2lm grown on a Si substrate with
a spatially uniform elastic strain. Upon creation of the lateral stress-free face of the
column, however, the elastic strain is altered signi2cantly, becoming relaxed in some
portions of the column and increased in other portions. The variation of radial strain
�rr(r) with radial distance along the well midplane as computed by means of the 2nite
element method is illustrated in Fig. 3 for several device diameters, illustrating the two
main features of relaxation: one feature is con2ned to the vicinity of the free surface
for all diameters and is controlled by the layer thickness; the other dominates away
from the free surface and is controlled by the overall device dimensions.
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Fig. 3. Radial strain �rr versus distance along a radial line on the midplane of the quantum well. The strain
arises from the fabrication process and is a consequence of the constraint of epitaxy enforced on the material
interfaces.

4. Modi�cation of the Schrodinger equation

The partial di3erential equation which governs the wave function �(x; t) is the
Schrodinger equation,

− ˜2
2m0

92�
9xj9xj

(x; t) + V (x)�(x; t) =−i˜9�9t (x; t); (1)

where ˜ is Planck’s constant, m0 is the carrier mass which is equal in magnitude to
the electron mass for transport of either holes or electrons, and V (x) is a potential
2eld through which the carrier must propagate. Principal contributions to V (x) include
the e3ects of the nuclei at lattice sites in the semiconductor crystal and the externally
applied voltage, if any. Other factors a3ecting the potential 2eld are variations in ma-
terial properties from point-to-point in the structure and lattice distorting elastic strain.
Only a single, isolated carrier is considered in this discussion. However, if multiple
carriers were involved in transport, then their motions would be coupled through the
contribution each carrier makes to the potential 2eld of the others. The problem is
one which involves multiple size scales, ranging from the spacing of the lattice to the
overall scale of the device. If all geometrical dimensions of the heterostructure are
large compared to atomic spacing and if all 2elds vary slowly on the scale of lattice
spacing, then the discrete character of the lattice can be suppressed and can be taken
into account in an approximate way.
Suppose that the Schrodinger equation is considered for the case when the only con-

tribution to V (x) in an unrestrained crystal is the contribution due to lattice interaction
potential energy which has the periodicity of the crystal lattice. Assume a solution of
the form

�(x; t) = A(x)ei(k·x−E(k)t=˜); (2)
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where E(k) is the conserved energy of the carrier wave at wave number k. According to
Bloch’s theorem, the amplitude A(x) is then also periodic with the period of the lattice.
For any given k, nontrivial solutions for A(x) exist only for certain values of energy
E, and the graphical representation of the resulting dependence of these admissible
energies on wave number de2nes the band structure of the unstrained crystal. Accurate
determination of band structure requires extensive computation for realistic interaction
potentials of crystals; for some semiconductor materials, potentials which are able to
represent all important aspects of material behavior are not yet available. The search
for such potentials and their implications for band structure is the domain of basic
semiconductor physics. The point of departure here, with a view toward learning about
device performance, is in adopting useful descriptions of band structure which have
reached some level of acceptance.
Charge transport in SiGe occurs by motion of holes, and the aspect of the band

structure of most importance is that in the valence band adjacent to the semiconductor
band gap. The valence band is comprised of a multitude of sub-bands, each representing
a discrete admissible energy level at any particular value of k, and a number of these
sub-bands merge at the valence band edge, implying a degree of degeneracy. Most
importantly for present purposes, the location of the valence band edge in wave number
space coincides with the origin in that space, the so-called � point. It is precisely the
small amplitude wave numbers in the vicinity of the � point which are presumed
to dominate the wave motion representing transport. At the � point, the dependence
of E(k) on k is stationary under small changes in wave number, so a possible local
representation of sub-band structure is

E = E0 +
˜2
2m0

k · Lk; (3)

where E0 is the energy at the band edge with respect to some reference level and
L is a second rank tensor representing the curvature of the dependence of E on k
in the k direction; the factor ˜2=2m0 appears only for the convenience of rendering
the components of L dimensionless. A common simplifying assumption is that local
behavior is isotropic, that is, L= LI where I is the identity tensor, so that

E = E0 +
˜2L
2m0

k · k: (4)

This representation requires only two parameters, E0 and L, for each sub-band.
It is well known that there is an unambiguous correspondence between dispersion

relations and wave equations, in general. In the present instance, the dispersion relation
in Eq. (4) is equivalent to the partial di3erential equation

− ˜
2L

2m0

92�
9xj9xj

+ E0� =−i˜9�9t ; (5)

the solution of which is valid in the region of validity of Eq. (4). The carrier mass
m0 is e3ectively replaced by me = m0=L, the e8ective mass, and the lattice potential
is replaced by the reference level E0. Thus, for long wavelength behavior, the e3ect
of the lattice is represented by the two parameters me and E0. The former represents
an alteration in inertial characteristics of a carrier due to the lattice, while the latter
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represents a dielectric screening of a carrier from imposed 2elds due to the lattice.
As a result, the device behavior can be pursued on the basis of the continuum wave
equation

− ˜2
2me

92 
9xj9xj

(x) + V (x) (x) = (E − E0) (x); (6)

where Eq. (6) no longer includes any in&uence of lattice spacing. For analysis of single
sub-band behavior, E0 is commonly set equal to zero and both E and V (x) are referred
to this same reference level. A subtle point is that the velocity which appears in Eq. (4)
is the group velocity of the dispersive wave. As a consequence, the partial di3erential
equation (6) governs the envelope function or Bloch function of the transport wave.
Strain enters the picture once it is recognized that band structure is determined from

an interatomic potential expressed in terms of relative positions of the interacting nuclei
in the periodic lattice. Although lattice spacing and orientation are not made explicit
in Eq. (4), for example, the values of E0 and L depend on geometrical details of the
lattice. The lattice geometry for a cubic material, for example, can be speci2ed in terms
of three lattice vectors having speci2c orientation and magnitude. Starting from any
lattice site, a relative position vector composed of a linear combination of any integer
multiples of these lattice vectors locates another lattice site.
Let a denote a representative lattice vector and regard E0 and L in Eq. (4) as

functions of a. If the ideal crystal is strained homogeneously then the lattice vectors
deform into a set of new lattice vectors. Consider an arbitrary strain tensor U which is
small in magnitude and, without loss of generality, that strain occurs without rotation.
The deformed lattice vector a′ can then be expressed in terms of the undeformed
counterpart as a′ = a+ Ua. For any particular sub-band, the value of admissible energy
at a given value of k is

E′(k) = E(k) +
9E
9a (k) · (Ua) (7)

to 2rst order in strain. This point of view makes it possible to represent the sensitivity
of the sub-band features to strain in terms of sensitivity of the unstrained sub-band
features to changes in lattice vectors. In particular, V ′ = V +Dij�ij and L′ = L+Mij�ij
where

Dij =
1
2

[
9E0

9ai
aj +

9E0

9aj
ai

]
; Mij =

1
2

[
9L
9ai

aj +
9L
9aj

ai

]
: (8)

In reality, the value of Dij is the sum of the contributions due to all lattice vectors,
and similarly for Mij. Although the strain-induced adjustments to e3ective mass and
potential are determined on the basis of homogeneous deformation of the crystal, the
result is applied pointwise for spatially varying strain throughout the device. The ra-
tionale for doing so is that strain is assumed to vary slowly on the scale of lattice
spacing. Only the in&uence of strain on potential V is considered in the present study.
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5. Computational approach

The general procedure for quantitative determination of the density of con2ned elec-
tronic states in the device of interest is as follows. First, for a heteroepitaxial device
of given con2guration and composition, the strain 2eld induced by fabrication is de-
termined, usually by means of 2nite element simulation of the process. With the strain
2eld in hand and with knowledge of the electronic properties of the constituent mate-
rials in the absence of strain, the spatial distribution of e3ective mass (represented by
the parameter L) and the carrier potential V are known. The form of the Schrodinger
equation which governs the wave function  (x) for a single sub-band is then

− ˜2
2m0

9
9xi

L(̃x)
9 
9xi

(̃x) + V (̃x) (̃x) = E (̃x); (9)

where it has been anticipated that L may depend on position. The boundary and conti-
nuity conditions to be satis2ed by the wave function are that  =0 everywhere on the
external boundary and that Lni9 = 9xi must be continuous across any internal interface
with unit normal vector ni. A solution of this partial di3erential equation renders the
functional

�[ ] =
∫
R

[
− ˜2
2m0

9 Q 
9xi

L
9 
9xi

+ Q V − Q E 

]
dR; (10)

stationary under variations in wave function � which vanish on the material boundary.
Therefore, the variational requirement that ��=0 under variations � provides a weak
form of the Schrodinger equation which serves as the basis for 2nding approximate
solutions of Eq. (9) by means of the numerical 2nite element method (Johnson and
Freund, 2001). Solutions of Eq. (9) can be found only for certain values of energy E,
say E1; E2; : : : ; but not all correspond to con2ned states. The 2nal stage in the analysis is
to identify those particular eigen-solutions  (x) for which the level curves of | (x)|2
are con2ned to be within the quantum well. The density of con2ned states for the
device, in the form of number of states per unit energy E, can then be compared to
the measured current–voltage behavior of the device.

6. An application

Transport experiments have been carried out at Brown University (Akyuz et al.,
1998) on resonant tunneling diodes of the kind shown schematically in Fig. 2. The
devices studied had diameters in the range from 2 �m down to 0:15 �m. The current
versus bias voltage data from the experiments showed resonant tunneling peaks of the
kind anticipated in the qualitative argument given above in connection with Fig. 1. The
amplitude of measured current at the given bias voltage is expected to vary roughly
in proportion to the cross sectional area of the device. If the structure were truly
one-dimensional, on the other hand, the values of bias voltage at which resonant peaks
arise would not vary with device diameter. However, the data showed that the voltages
at which the peaks occurred deviated systematically from their values for large area
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Fig. 4. A representative mesh used in a 2nite element simulation of the device shown schematically in Fig. 2.
The same mesh is used to determine the elastic strain distribution, and subsequently to determine the wave
functions of con2ned states.

devices, and it was hypothesized that this deviation is due to the in&uence of elastic
strain. The lowest energy resonant peak, associated with transport of the so-called heavy
holes, drifted toward larger energies as the diameter of the device was reduced, and
a single sub-band of simulation was undertaken to examine the hypothesis. Assuming
transport along the z or x3 axis in the device, the heavy hole e3ective mass, repre-
sented by L in the Schrodinger equation in Eq. (9), is approximately 1=L=me = 0:537
(1 − s) + 0:284s for local Ge content s. The deformation potential matrix for heavy
hole transport is given by

Dij =



a+ b=2 0 0

0 a+ b=2 0

0 0 a− b


 ; (11)

where a = 2:1(1 − s) + 2:0s and b = −1:5(1 − s) − 2:2s in units of eV. The valence
band o3set of Si1−sGes relative to Si is 0:56s eV. The strain and the valence band edge
o3set determine V in Eq. (9).
A representative 2nite element mesh is shown in Fig. 4. Node spacing is chosen to

be smallest near the outer surface of the column and in the vicinity of the quantum
well in order to capture the variation of 2elds in these critical portions of the structure.
All energy states con2ned to the quantum well were determined numerically by

means of the 2nite element calculation. The result of the calculation is a discrete
distribution of points on the energy axis, with one point for each con2ned state with
due regard for any multiplicity of states at a given energy. To establish a continuous
density of con2ned states plot, a narrow Gaussian distribution of unit amplitude was
associated with each such point and all Gaussian curves were then added together. The
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Fig. 5. Computed density of con2ned states for heavy hole transport in the device represented in Fig. 2 for
three values of device diameter. The shift of the resonance peak toward higher energies with decrease in
diameter is consistent with experimental observations.

result is a fairly smooth composite curve in arbitrary units versus con2ned state energy.
The result of implementing this procedure for three di3erent diameter devices is shown
in Fig. 5 for diameters of 0:25, 0:5 and 1:0 �m. It is evident from these results that
the energy at which the peak occurs for any given diameter drifts toward increasing
values of energy as the device diameter is diminished, in a way which is consistent
with the experimental observations.

7. A concluding note

Model development up to the present time, as re&ected by the work outlined above,
has focused largely on calculation of the density of con2ned electronic states of de-
vices. Computational results for a particular resonant tunneling diode which has been
characterized experimentally have been summarized and discussed on this basis. How-
ever, the density of states is not what is measured in characterizing any particular
device. The long-term goal of work in this area is to produce synthetic current–voltage
response characteristics for practical device con2gurations. More speci2cally, the idea
is to understand the connections between the operational properties of a device and
those physical features that can be produced reliably by means of existing fabrication
process technology.
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