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Marked enhancement of photoluminescence of InGaAs/GaAs quanturf@oagswas observed by

the nanoindentation of the light-collecting fiber nanoprobe onto the sample surface. In order to

analyze its mechanism, calculations of the nanoprobe-induced strain and the energy-band profiles in
the bulk GaAs surrounding InGaAs QDs have been performed on the bases of linear continuum
elastic theory and six-band strain Hamiltonian. The calculations have revealed that the confinement
potential for light holes was generated by the nanoprobe indentation. The results obtained in this
study show that nanometer-scale strain modulation by nanoprobe indentation has potential for the
investigation of semiconductor nanostructure physics.2@3 American Institute of Physics.
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Nanoprobe measurement techniques such as scanningleasing the nanoproperhe indentation was controlled by
tunneling microscopySTM) and atomic force microscopy conventional ferroelectric lead zirconate titanate devices in
have considerably contributed to the atomic-scale surfaceur STM—PL apparatus; thus, the intensity of the indentation
physics/chemistry. Not only the surface physics but also thavas indicated by the nominal distance between the nano-
optical physics of semiconductor nanostructures has deveprobe and the surface. Two points should be noted: the nega-
oped greatly with scanning near-field optical microscopytive nominal distance in Fig. 1 does not mean an indentation
(SNOM).}? Nanoprobes can also be used to perturb/of the material surfacé&he nanoprobe did not penetrate into
modulate the surface potential or energy bands of semicorthe samplg but means that the material itself is pushed
ductors, as we have demonstrated recently in the nanopros®wnward with minor surface indentatidthe sample sur-
photoluminescence(PL) measurements of quasi-zero- face is pressed down and displaces downwareisch spec-
dimensional InGaA@)/GaAs quantum dotgQDs).>* In  trum was reproduced repeatedly according to the nanoprobe
these measurements, we have found that the photolumineBosition(up/down), which reveals that neither the sample nor
cence from the QDs was enhanced markedly by a small inthe nanoprobe was destroyed by the repeated indentation. It
dentation of the nanoprobe onto the sample surface. In thidas been clarified that the fine PL peaks originating from the
letter, we present the enhancement of nanoprobe PL of th8dividual QDs were observed to have one order of magni-
QDs and discuss its mechanism through the calculation di/de higher intensities in the case with the nanoprobe inden-
nanoprobe-induced energy-band modulation. tation (—50 nm) than the far-field broqd pedk-50 to +350

The apparatus we used to measure the PL of the Qng), and that the energy of each fine PL peak shifted to

was a STM-based low-temperatud K) SNOM (Unisoku, ~ Nigher energies by the indentatidd to —100 nm. The
USM-100R, where the nanoprobgu-coated optical fiber Maximum shﬁs of approximately 100 meV were observed in
with an aperture of 500-3000 nm diameter with similar apex/arious experiments of the nanoprobe indentation, and para-
radiug was installed to obtain the photoluminescenceP?liC traces were obtained in the scan diagi&g. 2), when
through its aperturécollection mod@3* A YAG2 laser (532 the nanoprobe was scanned laterally with the indentation of

nm, 540 mW/cr) excited photocarriers in GaAs, and the _0505gm. ;—.hﬁ nhumber ofdfinte E)heaks ol:t))serv::d IIS F‘Qt-h,l vtvr?s
obtained photoluminescence was analyzed by a monochrg’-. —>%, Which corresponds 1o thé number o QDs within the
: diameter approximately 300 nm, calculated from the QD
mator (SPEX, 270M and a charge coupled devi¢ECD) ) 00 o2 )
detector (SPEX, CCD-2000 The In,:Ga, ;As/GaAs QDs density (5—6<10" cm™ ©). The diameter 300 nm was also
: S derived from the maximum length of peak traces in Fig. 2,

were prepared by the strain-induced self-assembly technique_ , . : .
(with chemical beam epitaxy at 48078 and capped by and gives the effective aperture diameter of the nanoprobe.

: . In many research works on near-field optical physics, the
50-nm-thick GaAs. Figure 1 shows the PL enhancement ob o coments of the electric field of irradiated lights due to

served by the nanoprobe indentation onto the sample surfacﬁzTe surface plasmon generated on the metallic surfaces of
In thi§ report, we use the term “nanoprobe indentation” to nanoparticles or nanoprobes have been repdisthe ef-
describe the pressing down of a nanoprobe onto the SamPpig s of the surface plasmon depend strongly on the polariza-
surface within its elastic limifthus, no trace remains after tion of illuminated Iightsf?'g We have also observed that the
PL intensity for thep-polarized laser excitation is 1.8 times
dElectronic mail: ozasa@postman.riken.go.jp higher than that fos-polarized laser excitatiofnot shown
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Hominal distance ml TABLE |. Material parameters used in the calculations of strain distribution
7] e DERWEEN probe-surfa and strain Hamiltonian.
I e e L TNy
g e %200 | GaAs Iny Gy AS
a e _ +A0
T O ¢y (N/m?) 11.88x 101
§ I= c1p (N/mM?) 5.38x 10"
£ | a, (eV) —-7.63 —6.06
E i p ) a, (eV) —1.00 —0.93
g il Ay b (eV) -1.77 -1.81
§ o [ e, d (eVv) -3.10 -3.21
el ~ | e A, (V) 0.33 0.35
g -100
o [ i i i i i
B e S S ;EE bulk 151" The strain Hamiltonian of Pikus and Bfwas used
R e e to calculate the 3D energy-band shifts of GaAs, beneath/
1250 1300 1350 1400 around the indented nanoprobe. In principle, the strain
Phatan Energy (meV) Hamiltonian of Pikus cannot be applied to nonuniformly dis-

tributed straing® However, the spatial change of the
FIG. 1. (Colon E_nhancement of nanoprobe photoluminescence of '”GaAsnanoprObe-induced strain calculated here was modém
QDs (not normalizes than 0.2% for 10 nm, around 50 nm deptlallowing us

10 o o reasonably to apply the Pikus strain Hamiltonian. We chose
herg.”" However, a similar polarization dependence was obyng gjx.hand strain Hamiltonidh?! because our main inter-

tained even when the nanoprobe was positioned far aways; \as to analyze the band gaps of GaAs bulk, not those of
from the sample surfacet50 to +350 nm), indicating that | Gaas QDs, where the eight-band Hamiltonian may be suit-
the PL enhancement in Fig. 1 is not caused by the surfacg,e The material parameters used are listed in Table I. Elas-

plasmon effects. The increases in PL intensity as well as thg. constants were obtained from Refs. 22 and 23, and defor-
peak-energy shifts anbi-X transitions by pressure were re- aion potentials from Ref. 24. Poisson ratio of G%las

ported for the QDé.l‘_l“Those reports describe mainly t_rlgee- used for fiber probdquart?. Parameters for InGaAs were

dimensional(3D) uniform hydrostatic pressure effects. obtained by linear interpolation between those of GaAs and

Since the nanoprobe-induced pressures/strains are NoNnuiiras 24 The indentation force was chosen so as to reproduce

formly distributed, the 3D analysis of the strain distribution 5 100 meV blueshift in the InGaAs energy gaplk) at 50

is required to clarify the nanoprobe-indentation effects. 1y peneath the nanoprobe, which corresponds to the experi-
In order to calculate the nanoprobe-induced strains, o antal results. i.e. approximately 100 meV maximum PL

the basis of linear continuum elastic theory, we have aSpeak shifts for’InGa,As ODs embedded in 50-nm-thick GaAs.

sumed the apex of the nanoprobe is spherical with & 500 Nfihe maximum pressure beneath the probe, total indentation
radius, and the applied Hertzian contact thédmwithout  force and contact radius calculated were 62 GPa, AN3

friction), which gives a contacting radius and pressure distriyng 116 nm, respectively. The calculation process will be

bution on the sample surface for a given indentation forceyascribed in detail in a separate rep8rt.

Considering that strain induced by InGaAs QDs is minor in gjgre 3 shows the calculated depth profiles of shifts of
the surrounding GaAs compared with that by the nampmb’énergy-band edged’ point, AE., AE,,, AE,) of GaAs
indentation, we neglected the QD layer in our strain CaICUIa'surrounding InGaAs QDs, together with the strain distribu-
tions. The distribution of strain in the sample can be obtainegl,,q (insets. The remarkable feature in Fig. 3 is that a po-
then by using the stress-integral functions for semi-infinitegntja| minimum over 100 meV is generated for light holes at

around 65 nm beneath the nanoprobe. The potential mini-
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FIG. 3. (Color) Energy shift of GaAsI-point (E.,Ey,,Epn) induced by
FIG. 2. (Colorn Photoluminescence diagram with nanoprobe horizontal linenanoprobe indentation for depth direction. Strain components are given in

scan. the insets.
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) FIG. 5. (Color Dependence of energy shifEf,) on the indentation force
Distance (nm} for depth directionP,, F, andr represent pressure maximum beneath the

probe, total indentation force, and contact radius, respectively.
FIG. 4. (Color) Calculated depth-distance profile of energy shiftEgf.

Origin of distance is the center of nanoprobe apex. Nanoprobe contact arg%nfinement potential can be tailored by the shape of nano-
is shown by a black rectangle. . . . .
Y 9 probe apex and the indentation force. The results obtained in
i o this study show high potential of nanoprobe modulation of
mum for light holes originates from the shear component of,¢piconductor energy bands, where nanometer-scale modu-

the strain, as shown in the inset in Fig. 3. Furthermore, they(ion can be realized with microNewton indentation force,
depth-distance profile afEy, (Fig. 4) indicates that the pho- hjike in the case of conventional uniaxial pressure experi-

toexcited light holes in the surrounding hemisphere &@@a  ments. The nanoprobe-pressure-modulation measurethents
proximately 300 nm horizontal diamejeffow into the po- ot semiconductor characteristics must be useful to investi-

tential minimum beneath the nanoprobe. Therefore, theate the nanometer-scale physics in various nanostructures,
nanoprobe-induced potential minimum for light holes N especially those embedded by a thin capping layer.
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